...
首页> 外文期刊>Journal of Electronic Packaging >Design, Analysis, Comparison, and Experimental Validation of Insulated Metal Substrates for High-Power Wide-Bandgap Power Modules
【24h】

Design, Analysis, Comparison, and Experimental Validation of Insulated Metal Substrates for High-Power Wide-Bandgap Power Modules

机译:高功率宽带隙电源模块绝缘金属基板的设计,分析,比较和实验验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Direct bonded copper (DBC) substrates used in power modules have limited heat spreading and manufacturing capability due to ceramic properties and manufacturing technology. The ceramic and copper bonding is also subject to high mechanical stress due to coefficient of thermal expansion mismatch between the copper and the ceramic. For wide-bandgap (WBG) devices, it is of interest exploring new substrate technologies that can overcome some of the challenges of direct bonded copper substrates. In this technical paper, the design, analysis, and comparison of insulated metal substrates (IMSs) for high-power wide-bandgap semiconductor-based power modules are discussed. This paper starts with technical description and discussion of state-of-the-art DBC substrates with different ceramic insulators such as aluminum nitride (AIN), Al_2O_3, and Si_3N_4. Next, an introduction of IMSs and their material properties, and a design approach for SiC (silicon carbide) metal-oxide-semiconductor field-effect transistor (MOSFET)-based power modules for high-power applications is provided. The influence of dielectric thickness on the power handling capability of the substrate are also discussed. The designed IMS and DBC substrates were characterized in terms of steady-state and transient thermal performance using finite element simulation. Finally, the performance of the IMS and DBC are validated in an experimental setup under different loading and cooling temperature conditions. The simulation and experimental results showed that the IMS can provide high steady-state thermal performance for high-power modules based on SiC MOSFETs. Furthermore, the IMS provided enhanced transient thermal performance, which provided a reduced junction temperature when the module is operated at low fundamental output frequencies in traction drive systems.
机译:电力模块中使用的直接粘接铜(DBC)基材具有有限的散热和由于陶瓷特性和制造技术的制造能力。由于铜和陶瓷之间的热膨胀系数,陶瓷和铜键合也经受高机械应力。对于宽带隙(WBG)设备,它是探索新的基板技术的兴趣,可以克服直接粘合铜基材的一些挑战。在本技术纸张中,讨论了用于高功率宽带隙半导体功率模块的绝缘金属基板(IMS)的设计,分析和比较。本文从技术描述和讨论的技术描述和讨论,其具有不同陶瓷绝缘体,例如氮化铝(AIN),AL_2O_3和Si_3N_4。接下来,提供了IMSS及其材料特性的引入,以及用于高功率应用的基于SiC(碳化硅)金属氧化物 - 半导体场效应晶体管(MOSFET)的基于电力模块的设计方法。还讨论了介电厚度对基板的动力处理能力的影响。设计IMS和DBC基板的特征在于使用有限元模拟的稳态和瞬态热性能。最后,在不同负载和冷却温度条件下的实验设置中验证了IMS和DBC的性能。仿真和实验结果表明,基于SiC MOSFET,IMS可以为高功率模块提供高稳态热性能。此外,IMS提供了增强的瞬态热性能,该瞬态热性能提供了在牵引驱动系统中以低基波输出频率操作时的结模块。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2020年第4期|041107.1-041107.10|共10页
  • 作者单位

    Power Electronics and Electric Machinery Group Oak Ridge National Laboratory Oak Ridge TN 37830;

    Power Electronics and Electric Machinery Group Oak Ridge National Laboratory Oak Ridge TN 37830;

    Power Electronics and Electric Machinery Group Oak Ridge National Laboratory Oak Ridge TN 37830;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号