...
首页> 外文期刊>Journal of Electronic Packaging >Additive Manufactured Impinging Coolant, Low Electromagnetic Interference, and Nonmetallic Heat Spreader: Design and Optimization
【24h】

Additive Manufactured Impinging Coolant, Low Electromagnetic Interference, and Nonmetallic Heat Spreader: Design and Optimization

机译:添加剂制造撞击冷却剂,低电磁干扰和非金属散热器:设计和优化

获取原文
获取原文并翻译 | 示例
           

摘要

With the increase of electronic device power density, thermal management and reliability are increasingly critical in the design of power electronic systems. First, increased density challenges the capability of conventional heat sinks to adequately dissipate heat. Second, higher frequency switching in high voltage, high current, wide bandgap power modules is creating intensified electromagnetic interference (EMI) challenges, in which metallic heat removal systems will couple and create damaging current ringing. Furthermore, mobile power systems require lightweight heat removal methods that satisfy the heat loads dissipated during operation. In this effort, we introduce an additive manufacturing (AM) pathway to produce custom heat removal systems using nonmetallic materials, which take advantage of impinging fluid heat transfer to enable efficient thermal management. Herein, we leverage the precision of additive manufacturing techniques in the development of three-dimensional optimized flow channels for achieving enhanced effective convective heat transfer coefficients. The experimental performance of convec-tive heat removal due to liquid impingement is compared with conventional heat sinks, with the requirement of simulating the heat transfer needed by a high voltage inverter. The implementation of nonmetallic materials manufacturing is aimed to reduce electromagnetic interference in a low weight and reduced cost package, making it useful for mobile power electronics.
机译:随着电子设备电力密度的增加,热管理和可靠性在电力电子系统的设计中越来越重要。首先,增加的密度挑战常规散热器的能力以充分消散热量。二,高电压频率开关,高电流,宽带隙电源模块正在创造强化电磁干扰(EMI)挑战,其中金属散热系统将耦合并产生损坏的电流振铃。此外,移动电力系统需要轻质的热除去方法,该方法满足在操作期间消散的热负荷。在这项努力中,我们介绍了一种添加剂制造(AM)途径,用于使用非金属材料产生定制的散热系统,这利用撞击流体热传递以实现高效的热管理。这里,我们利用添加剂制造技术的精度在开发三维优化流动通道中,用于实现增强的有效对流传热系数。与液体冲击引起的液体冲击引起的常规散热器的实验性能与常规散热器进行比较,要求模拟高压逆变器所需的热传递。非金属材料制造的实施旨在减少低重量和成本包装的电磁干扰,使其可用于移动电力电子。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2020年第4期|041004.1-041004.8|共8页
  • 作者单位

    Department of Mechanical Engineering University of Arkansas Fayetteville AR 72701;

    Department of Mechanical Engineering University of Arkansas Fayetteville AR 72701;

    Department of Mechanical Engineering University of Arkansas Fayetteville AR 72701;

    Department of Electrical Engineering University of Arkansas Fayetteville AR 72701;

    Department of Electrical Engineering University of Arkansas Fayetteville AR 72701;

    Department of Electrical Engineering University of Arkansas Fayetteville AR 72701;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号