...
首页> 外文期刊>Journal of dairy science >Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information
【24h】

Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information

机译:基因评估的计算程序,包括表型,全谱系和基因组信息

获取原文
获取原文并翻译 | 示例
           

摘要

Currently, genomic evaluations use multiple-step procedures, which are prone to biases and errors. A single-step procedure may be applicable when genomic predictions can be obtained by modifying the numerator relationship matrix A to H = A + A_Δ, where A_Δ includes deviations from expected relationships. However, the traditional mixed model equations require H~(-1) which is usually difficult to obtain for large pedigrees. The computations with H are feasible when the mixed model equations are expressed in an alternate form that also applies for singular H and when those equations are solved by the conjugate gradient techniques. Then the only computations involving H are in the form of Aq or A_Δq, where q is a vector. The alternative equations have a nonsymmetric left-hand side. Computing A_Δq is inexpensive when the number of nonzeros in A_Δ is small, and the product Aq can be calculated efficiently in linear time using an indirect algorithm. Generalizations to more complicated models are proposed. The data included 10.2 million final scores on 6.2 million Holsteins and were analyzed by a repeatability model. Comparisons involved the regular and the alternative equations. The model for the second case included simulated A_Δ. Solutions were obtained by the preconditioned conjugate gradient algorithm, which works only with symmetric matrices, and by the bi-conjugate gradient stabilized algorithm, which also works with nonsymmetric matrices. The convergence rate associated with the nonsymmetric solvers was slightly better than that with the symmetric solver for the original equations, although the time per round was twice as much for the nonsymmetric solvers. The convergence rate associated with the alternative equations ranged from 2 times lower without A_Δ to 3 times lower for the largest simulated A_Δ. When the information attributable to genomics can be expressed as modifications to the numerator relationship matrix,rnthe proposed methodology may allow the upgradingrnof an existing evaluation to incorporate the genomicrninformation.
机译:当前,基因组评估使用多步骤程序,这容易产生偏差和错误。当可以通过将分子关系矩阵A修改为H = A +A_Δ来获得基因组预测时,单步过程可能适用,其中A_Δ包括与期望关系的偏差。但是,传统的混合模型方程需要H〜(-1),对于大的血统来说通常很难获得。当混合模型方程式以另一种形式表示(也适用于奇异H值)并且这些方程式通过共轭梯度技术求解时,使用H进行计算是可行的。然后,唯一涉及H的计算形式为Aq或A_Δq,其中q是向量。备选方程式的左侧不对称。当A_Δ中的非零数较少时,计算A_Δq的成本不高,并且可以使用间接算法在线性时间内高效地计算乘积Aq。提出了对更复杂模型的概括。数据包括620万荷斯坦的1020万最终得分,并通过可重复性模型进行了分析。比较涉及正则方程和替代方程。第二种情况的模型包括模拟的A_Δ。通过预处理的共轭梯度算法(仅适用于对称矩阵)和双共轭梯度稳定算法(也适用于非对称矩阵)获得了解。对于原始方程,与非对称求解器相关的收敛速度略好于与对称求解器相关的收敛速度,尽管非对称求解器的每轮时间是其两倍。与替代方程式相关的收敛速度范围从无A_Δ的低2倍到最大模拟A_Δ的低3倍。当归因于基因组学的信息可以表示为对分子关系矩阵的修改时,所提出的方法可以允许升级现有评估以合并基因组信息。

著录项

  • 来源
    《Journal of dairy science》 |2009年第9期|4648-4655|共8页
  • 作者单位

    Department of Animal and Dairy Science, University of Georgia, Athens 30602;

    lnstitut National de la Recherche Agronomique (INRA), UR631 SAGA, BP 52627, 32326 Castanet-Tolosan, France;

    Department of Animal and Dairy Science, University of Georgia, Athens 30602 Institute Nacional de Investigacion Agropecuaria, Las Brujas 90200, Uruguay;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    best linear unbiased predictor; genomic selection; single nucleotide polymorphism; genetic evaluation;

    机译:最佳线性无偏预测器;基因组选择单核苷酸多态性基因评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号