首页> 外文期刊>Journal of Contaminant Hydrology >Microbial Impacts to the Near-Field Environment Geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain
【24h】

Microbial Impacts to the Near-Field Environment Geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain

机译:微生物对近场环境的地球化学影响:丝兰山储层漂移中微生物群落的估算模型

获取原文
获取原文并翻译 | 示例
           

摘要

Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned 1 million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 ℃ and above relative humidities of 90% in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley et al. [FEMS Microbiol. Rev. 20 (1997) 545] by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift to perform two separate mass balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C_(160)(H_(280)O_(80))N_(30)P_2S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature and pH at that time. This optimization maximizes those reactions that produce >15 kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated environments and in laboratory situations to establish microbial growth limitations. Other projected uses include investigations of contaminated locations where monitored natural attenuation or engineered bioremediation could be employed.
机译:进行了地球化学和微生物学建模,以评估潜在的数量和微生物对内华达州尤卡山拟议的处置库漂移区中与核废料包相邻并位于其内的区域的地球化学的影响。微生物的生长是由于将水,地面支持物和废物包装材料引入深层的不饱和岩石中所致。使用新开发的计算机代码“微生物对近场环境地球化学的影响”(MING),完成了跨越一百万年的模拟。 MING使用环境阈值将微生物生长限制在温度低于120℃和相对湿度超过90%的储存库漂移中。一旦满足这些阈值,MING便会扩展McKinley等人提出的质量平衡和热力学方法。 [FEMS微生物。 Rev. 20(1997)545]通过使用动力学速率将设计材料中的成分和包括溶解的岩石成分的成分通量供应到漂移中,以执行两个独立的质量平衡计算,作为时间的函数。第一个(养分限值)评估可用养分(C,N,P和S),并基于C_(160)(H_(280)O_(80))N_(30)的微生物化学计量来计算可以产生多少微生物)P_2S。第二个(能量极限)计算了当时温度和pH值从最佳组合氧化还原对获得的能量。使用迭代线性优化技术,该优化可最大化那些产生> 15 kJ / mol(对可用能量的限制)的反应。最终的可用能量值以每64 MJ能量1 kg生物量(干重)的比率转换为微生物质量。然后比较这两个值(营养极限和能量极限),较小的值表示在指定时间内可以产生的微生物数量。由于该模型可以在饱和和非饱和环境中以及在实验室环境中建立微生物生长限制,因此MING还可以用于研究其他感兴趣的问题。其他预计的用途包括调查受污染的地点,在这些地点可以采用监测的自然衰减或工程化的生物修复方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号