...
首页> 外文期刊>Journal of Computational Neuroscience >Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics
【24h】

Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics

机译:3D神经元系统中的共振调制,an灭以及反共振和反相位的产生:共振和放大电流之间的相互作用,动力学缓慢

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and antiphasonance emerge as the result of an asymptotic boundary layer problem in the frequency domain created by the different balances between the intrinsic time constants of the cell and the input frequency f as it changes. For large enough values of f the envelope curves are quasi-2D and the impedance profile decreases with the input frequency. In contrast, for f ae 1 the dynamics are quasi-1D and the impedance profile increases above the limiting value in the other regime. Antiresonance is created because the continuity of the solution requires the impedance profile to connect the portions belonging to the two regimes. If in doing so the phase profile crosses the zero value, then antiphasonance is also generated.
机译:单个神经元中的亚阈值(膜电位)共振和相位(对振荡输入的最佳振幅和零相位响应)是由相对较快的放大​​电流和较慢的共振电流提供的正反馈和负反馈效应之间的相互作用引起的。在2D神经元系统中,放大电流需要从动于电压(瞬时快)以使这些现象发生。在更高维度的系统中,在各种有效时间范围内运行的附加电流可能会调制和消除现有的共振,并产生反共振(最小幅度响应)和反相位(零相位响应,其相位单调特性与相位相反)。我们使用数学建模,数值模拟和动力学系统工具来研究3D线性模型中这些现象的机理,这些机理是通过生物物理(基于电导)模型的线性化获得的。我们描述了在基本2D系统表现出共振的相当普遍的情况下,系统表现出上述各种类型行为的参数体系。我们考虑两种情况:(i)两个共振门控变量的相互作用,以及(ii)一个共振门控变量和一个放大门控变量的相互作用。放大电流水平的提高导致(i)如果放大电流比谐振电流快,则响应放大;(ii)如果放大和谐振电流具有相同的动态特性,则谐振和相位衰减和an灭;以及(iii)反谐振和反谐振如果放大电流比谐振电流慢。我们通过将先前工作中(针对2D系统)开发的包络平面图方法扩展到三个维度以包括其他选通变量,并在这些包络空间图中构造相应的包络曲线,来研究潜在的机制。我们发现反共振和反共振是频域中渐近边界层问题的结果,该问题由单元固有时间常数和输入频率f随其变化而产生的不同平衡而产生。对于足够大的f值,包络曲线为准2D,并且阻抗曲线随输入频率而降低。相反,对于fa <女性顺序指示器> 1,动力学近似为1D,并且在其他情况下,阻抗曲线增加到极限值以上。因为解决方案的连续性要求阻抗分布图来连接属于两个方案的部分,所以会产生反共振。如果这样做,相位分布曲线越过零值,那么也会产生反相位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号