...
首页> 外文期刊>Journal of Cleaner Production >Mechanism of nano-silica to enhance the robustness and durability of concrete in low air pressure for sustainable civil infrastructures
【24h】

Mechanism of nano-silica to enhance the robustness and durability of concrete in low air pressure for sustainable civil infrastructures

机译:纳米二氧化硅的机理,提高混凝土稳健性和耐久性的可持续性民用基础设施

获取原文
获取原文并翻译 | 示例
           

摘要

Cement concrete is an extensively used construction material in buildings and civil infrastructures. As infrastructure moves into plateau areas, freeze-thaw failure is a main durability challenge for concrete due to the frequent freeze-thaw cycles and entrained air pore coarsening in high altitude and low air pressure (Lap). Recently, there has been a growing interest in the application of nano-silica (NS) due to its notable improvement in concrete durability in plateau areas as well as the consumption of industrial by-product, both improve the sustainability of civil infrastructures. Therefore, this paper studies the mechanism of NS for enhancing the robustness and durability of concrete in low air pressure, the results of which foster the application of NS concrete for designing and constructing sustainable civil infrastructures in plateau areas. Two different kinds of air-entraining agents (AEAs) were utilized to prepare air-entrained concrete. Following this, NS was employed to modify the micro and meso structure of the concrete, and then determine their influence on the performance of concrete. The influence of NS on the entrained air bubbles and air pores were analyzed via micro measurements including Fourier Transform infrared spectroscopy (FTIR), Energy-Dispersive X-ray Spectroscopy (EDS), and Scanning Electron Microscope (SEM). CABR-457 hardened concrete air pore structure analyzer was employed to study microstructure of air-entrained concrete with and without NS. The results demonstrate that the adsorption of NS at air bubble shell entrained by AEAs can densify the hydration products of the air pore wall and influence the pore size distribution, thereby improving the flexural strength and frost resistance of air-entrained concrete under low air pressure. The average air pore diameter of concrete with proper AEAs can be refined by 43.3% after adding NS. SEM, EDS and FTIR data analysis proves the adsorption of NS on the air bubble shell and differences in chemical composition of air bubble shell entrained by two types of AEAs. The differences in the composition of bubble shells result in diverse degree of NS optimized concrete performance. This study deepens our understanding into the fundamental mechanism of NS in concrete in Lap, which also prompts its application to create a sustainable built environment.
机译:水泥混凝土建筑和民用基础设施的广泛使用的建筑材料。由于基础设施移动到高原地区,冻融破坏是混凝土耐久性的主要挑战,因为频繁的冻融循环和夹带气孔在高海拔,低气压(LAP)粗化。最近,出现了纳米二氧化硅(NS)的应用越来越多的兴趣,因为在高原地区混凝土耐久性以及副产品工业消费的显着改善,既提高民用基础设施的可持续性。因此,本文研究NS的提高在低气压混凝土的坚固性和耐用性的机制,其结果促进NS具体的设计和高原地区构建可持续民用基础设施的应用程序。两种不同类型的引气剂(AEAS)被用来制备加气混凝土。在此之后,NS被用来修改微和混凝土的细观结构,然后确定其对混凝土性能的影响。 NS对夹带气泡和空气孔的影响进行了经由微测量,包括傅立叶变换红外光谱(FTIR)分析,能量色散X射线光谱法(EDS)和扫描电子显微镜(SEM)。 CABR-457硬化混凝土空气孔结构分析仪采用具有和不具有NS加气混凝土的研究微结构。结果表明,NS中的空气泡壳由AEAS中夹带的吸附可以致密化空气孔壁的水化产物,并影响孔尺寸分布,从而改善低气压下加气混凝土的抗弯强度和抗冻性。混凝土的平均空气孔径适当AEAS可以通过43.3%加入NS后加以改进。 SEM,EDS和FTIR数据分析证明NS对空气泡壳并且在由两种类型的AEAS夹带的空气泡壳的化学组成差异的吸附。在泡壳的组合物中的差异导致不同程度的NS优化混凝土的性能。这项研究加深了我们认识到在混凝土立NS的基本机制,这也促使其应用程序创建一个可持续建筑环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号