...
首页> 外文期刊>Journal of Cleaner Production >Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems
【24h】

Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems

机译:使用无机纳米颗粒和外部磁场增强PCM固化及其在能量存储系统中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Heat recovery is one of the solutions to reduce Carbon dioxide emission, and using latent heat thermal energy storage systems (LHTESS) can be a promising way for heat recovery. In the present article, for the first time, the effects of both inorganic nanoparticles as an additive to PCM (phase change materials) and magnetic field on the PCM solidification rate inside a porous energy storage system have been modeled. For this purpose, the mixture of CuO nanoparticles and water was used as NEPCM (nanoparticle-enhanced PCM), and an external magnetic field was applied to the system. The unsteady process of solidification inside the storage system was simulated by employing finite element method (FEM). The impacts of various parameters including Lorentz forces strength, CuO/water concentration, and Rayleigh number on the charging time have been evaluated. Solid fraction, temperature, and streamline contours have been plotted to study the solidification process locally. The results indicated that with augmenting the Hartmann number from 0 to 10, the solidification time was reduced up to 23.5% in average. On the other hand, the addition of nanoparticles to PCM with volume fractions up to 4% leads to, on average, a 14% decrease in the solidification time. The obtained results suggest to employ the magnetic field as an effective solution to accelerate the solidification in energy storage systems while to reinforce the influence of magnetic field; nanoparticles can be added to the PCM. Finally, the solidification time was correlated with three main design parameters, i.e. nanoparticle volume fraction, Hartmann and Rayleigh numbers with a mathematical expression. (C) 2019 Elsevier Ltd. All rights reserved.
机译:热回收是减少二氧化碳排放的解决方案之一,使用潜热热能存储系统(LHTESS)可能是一种有前途的热回收方法。在本文中,首次模拟了无机纳米颗粒作为PCM(相变材料)的添加剂和磁场对多孔储能系统内部PCM固化速率的影响。为此,将CuO纳米颗粒和水的混合物用作NEPCM(纳米颗粒增强PCM),并将外部磁场施加到系统上。采用有限元方法(FEM)模拟了存储系统内部的非稳态凝固过程。评估了包括洛伦兹力强度,CuO /水浓度和瑞利数在内的各种参数对充电时间的影响。绘制了固体成分,温度和流线轮廓,以局部研究固化过程。结果表明,随着哈特曼数从0增加到10,固化时间平均减少了23.5%。另一方面,将纳米颗粒添加到PCM中的体积分数最高为4%,平均导致固化时间减少14%。所得结果表明,应采用磁场作为有效的解决方案,以加速能量存储系统中的凝固,同时增强磁场的影响。可以将纳米颗粒添加到PCM中。最后,凝固时间与三个主要设计参数相关,即具有数学表达式的纳米颗粒体积分数,Hartmann和Rayleigh数。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号