...
首页> 外文期刊>The Journal of Canadian Petroleum Technology >Solvent-Chamber Development in 3D-Physical-Model Experiments of Solvent-Vapour Extraction (SVX) Processes With Various Permeabilities and Solvent-Vapour Qualities
【24h】

Solvent-Chamber Development in 3D-Physical-Model Experiments of Solvent-Vapour Extraction (SVX) Processes With Various Permeabilities and Solvent-Vapour Qualities

机译:具有不同渗透率和溶剂蒸气质量的溶剂蒸气萃取(SVX)过程的3D物理模型实验中的溶剂室开发

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Solvent-vapour extraction (SVX) processes offer an attractive alternative to thermal recovery processes by being less energy intensive and are more suitable for thinner, partially depleted reservoirs. A typical SVX process uses solvent injection to dilute the heavy oil by reducing its viscosity, allowing it to be mobilized for production. During this process, the injection of hydrocarbon solvents results in partial deasphalting of the heavy oil, thus reducing its viscosity and enhancing the process performance further. This work examined the formation and growth of solvent chambers in laterally and vertically spaced horizontal injector/ producer well pairs in porous media with five different permeabilities and three different solvent-vapour qualities. Consolidation of the porous media caused by asphaltene precipitation was also analyzed. Thermal-imaging and model excavation studies were performed to investigate the formation and growth of solvent chambers for seven different experiments conducted on a large 3D-physical-model apparatus. The important findings from this study are as follows: During solvent injection, one or more solvent fingers develop between the injector and producer. The dominant solvent finger becomes a conduit that grows into a solvent chamber connected to the injection well in the upper portion of the reservoir, and develops into an oil-drainage conduit connected to the production well in the lower portion of the reservoir. Solvent dispersion layers are located on the margins of both the solvent chambers and the oil-drainage conduits. The location and development of these nonuniform solvent chambers and oil-drainage conduits are unpredictable, and the oil-drainage conduits do not grow significantly in diameter once connected to the production wellbore, limiting the wellbore inflow efficiency and conformity. Asphaltene precipitation and migration can aggravate this inflow problem, reducing the SVX process performance further. SVX performance can be improved by increasing the number and diameter of oil-drainage connections between the solvent chamber and the production well, and by controlling the oil deasphalting process. This can be performed by optimizing injection-and production-wellbore geometries, and by optimizing solvent-injection rates and vapour quality.
机译:溶剂蒸气萃取(SVX)工艺具有较低的能源消耗量,是热回收工艺的一种有吸引力的替代方法,它更适合于较薄,部分耗尽的储层。典型的SVX工艺使用溶剂注入法通过降低其粘度来稀释重油,从而使其可动员用于生产。在此过程中,注入烃类溶剂会导致重油部分脱沥青,从而降低其粘度并进一步提高工艺性能。这项工作研究了在具有五个不同渗透率和三个不同溶剂蒸气性质的多孔介质中,横向和垂直间隔的水平注入器/生产器井对中溶剂室的形成和生长。还分析了由沥青质沉淀引起的多孔介质的固结。进行了热成像和模型挖掘研究,以研究在大型3D物理模型设备上进行的七个不同实验的溶剂腔室的形成和生长。这项研究的重要发现如下:在注入溶剂期间,在注入器和生产商之间会形成一个或多个溶剂指。占主导地位的溶剂指状物变成一个导管,该导管长入一个与储层上部注入井相连的溶剂腔,并发展成一个与储层下部生产井相连的排油导管。溶剂分散层位于溶剂腔和排油导管的边缘。这些不均匀的溶剂室和排油导管的位置和发展是无法预测的,并且一旦连接到生产井眼,排油导管的直径就不会显着增长,从而限制了井眼的流入效率和一致性。沥青质的沉淀和迁移会加剧这种流入问题,从而进一步降低SVX工艺的性能。通过增加溶剂腔室和生产井之间排油连接的数量和直径,以及控制油的脱沥青过程,可以提高SVX性能。这可以通过优化注入和生产井眼的几何形状以及优化溶剂注入速率和蒸汽质量来执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号