...
首页> 外文期刊>Journal of the British Interplanetary Society >HEAT TRANSFER IN FUSION STARSHIP: Radiation Shielding Systems
【24h】

HEAT TRANSFER IN FUSION STARSHIP: Radiation Shielding Systems

机译:融合星舰中的热传递:辐射屏蔽系统

获取原文
获取原文并翻译 | 示例
           

摘要

Fusion starship designs require radiation shielding from neutrons and X-rays created by the drive. Even nominally aneutronic fusion reactions, such as Deuterium+He3, produce neutron fluxes through side reactions that may create large cooling requirements in drive structural elements. This paper aims to quantify these emissions and describe the heat transfer systems required to handle these heat loads. Neutrons and X-ray emissions are established for three fusion drive designs, Daedalus, a Daedalus variant named I'Esperance and Icarus Firefly. From nearly zero for Daedalus, they rise to 220 GW for I'Esperance and to 8400 GW for Firefly.The geometric structure of the vehicles is analyzed in order to determine the impingement rate for the neutron and X-Ray radiation. The open nozzle proposed by Miernik is used as an example of design, allowing up to 97% of the radiation to escape. Firefly, the most severely heat loaded design, requires 260 GW of cooling.Two methods are compared to remove the heat to the radiators.Temperature change using Q=m_f×cp×Δt for gas and liquid flows, and Q=m_f×V_e for phase change. The fluid paths are determined and pump and compressor power requirements are calculated. Then radiator areas and masses are determined. The physical arrangements of radiators are examined in regards to view factors, radiator placement and the influence of these on radiative power. Phase change in liquid metals provides the most powerful heat extraction method for the powers levels involved in starship propulsion, and radiators need to be placed as close to the drive as possible to avoid important mass penalties.
机译:融合星舰设计需要从驱动器产生的中子和X射线辐射屏蔽。甚至名义上是氘+ He3,氘+ He3,通过副反应产生中子丝量,这在驱动结构元件中可以产生大的冷却要求。本文旨在量化这些排放,并描述处理这些热负荷所需的传热系统。中子和X射线排放是为三个融合驱动器设计,DaedaLus,DaedaLus Variant命名的DaedaLus Variant,名为Idserance和Icarus Firefly。从近零对于DaedaLus来看,它们的速度升至220 GW,萤火虫为8400 GW。分析车辆的几何结构,以确定中子和X射线辐射的冲击率。 Miernik提出的打开喷嘴用作设计的示例,允许高达97%的辐射逃逸。萤火虫,最严重的加载设计,需要260 GW的冷却。与辐射器的热量进行比较。使用Q = M_F×CP×Δt的温度变化,用于气体和液体流动,Q = M_F×V_E相变。确定流体路径并计算泵和压缩机功率要求。然后确定散热器区域和质量。考虑到观察因素,散热器放置和这些对辐射动力的影响,研究了散热器的物理布置。液体金属中的相变为普通推进中涉及的电力水平的最强大的热提取方法,并且散热器需要尽可能靠近驱动器放置,以避免重要的质量惩罚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号