首页> 外文期刊>Journal of Asian earth sciences >Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin
【24h】

Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin

机译:油气运移现象的地球化学评估:以死海盆地西南缘为例

获取原文
获取原文并翻译 | 示例
           

摘要

Calcite veins with fluid and solid bitumen inclusions have been discovered in the south-western shoulder of the Dead Sea rift within the Masada-Zohar block, where hydrocarbons exist in small commercial gas fields and non-commercial fields of heavy and light oils. The gas-liquid inclusions in calcite are dominated either by methane or CO_2, and aqueous inclusions sometimes bear minor dissolved hydrocarbons. The enclosed flake-like solid bitumen matter is a residue of degraded oil, which may be interpreted as "dead carbon". About 2/3 of this matter is soot-like amorphous carbon and 1/3 consists of n-C_8-C_(18) car-boxylic acids and traces of n-alkanes, light dicarboxylic acids, and higher molecular weight (>C_(20)) branched and/or cyclic carboxylic acids. Both bitumen and the host calcites show genetic relationship with mature Maastrichtian chalky source rocks (MCSRs) evident in isotopic compositions (δ~(13)C, δ~(34)S, and δ~(18)O) and in REE + Y patterns. The bitumen precursor may have been heavy sulfur-rich oil which was generated during the burial compaction of the MCSR strata within the subsided blocks of the Dead Sea graben. The δ~(18)O and δ~(13)C values and REE + Y signatures in calcites indicate mixing of deep buried fluids equilibrated with post-mature sediments and meteoric waters. The temperatures of fluid generation according to Mg-Li-geothermometer data range from 55 ℃ to 90 ℃ corresponding to the 2.5-4.0 km depths, and largely overlap with the oil window range (60-90 ℃) in the Dead Sea rift (Hunt, 1996; Gvirtz-man and Stanislavsky, 2000; Buryakovsky et al., 2005). The bitumen-rich vein calcites originated in the course of Late Cenozoic rifting and related deformation, when tectonic stress triggers damaged small hydrocarbon reservoirs in the area, produced pathways, and caused hydrocarbon-bearing fluids to rise to the subsurface; the fluids filled open fractures and crystallized to calcite with entrapped bitumen. The reported results are in good agreement with the existing views of maturation, migration, and accumulation of hydrocarbons, as well as basin fluid transport processes in the Dead Sea area.
机译:在Masada-Zohar区块的死海裂谷的西南肩部发现了具有流体和固体沥青夹杂物的方解石脉,那里的碳氢化合物存在于小型商业气田和重油和轻油的非商业气田中。方解石中的气液包裹体以甲烷或CO_2为主,含水包裹体有时带有少量溶解的碳氢化合物。封闭的片状固体沥青物质是降解油的残余物,其可以解释为“死碳”。该物质的约2/3是烟灰状的无定形碳,而1/3由n-C_8-C_(18)羧酸和痕量的正构烷烃,轻型二羧酸和较高的分子量组成(> C_( 20))支链和/或环状羧酸。沥青和主方解石均与同位素组成(δ〜(13)C,δ〜(34)S和δ〜(18)O)和REE + Y中明显的成熟的马斯特里克垩白垩系烃源岩(MCSRs)形成遗传关系。模式。沥青前驱物可能是富含硫的重油,是在死海grab石塌陷区块内的MCSR地层埋藏压实过程中产生的。方解石中的δ〜(18)O和δ〜(13)C值以及REE + Y标记表示与成熟后沉积物和陨石水平衡的深埋流体的混合。根据Mg-Li-地热仪数据,生成流体的温度范围为55℃至90℃,对应于2.5-4.0 km深度,并且与死海裂谷(Hunt)的油窗范围(60-90℃)有很大的重叠,1996; Gvirtz-man和Stanislavsky,2000; Buryakovsky等,2005)。丰富的沥青脉方解石起源于晚新生代裂谷和相关的变形,当构造应力触发该地区受损的小型油气藏,产生通道并导致含烃流体上升至地下时;流体充满了开放的裂缝,并被包裹的沥青结晶为方解石。报告的结果与现有的关于烃的成熟,迁移和聚集以及死海地区盆地流体输送过程的观点非常吻合。

著录项

  • 来源
    《Journal of Asian earth sciences》 |2014年第15期|211-228|共18页
  • 作者单位

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia,Novosibirsk State University, 2 Pirogova str., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia,Novosibirsk State University, 2 Pirogova str., Novosibirsk 630090, Russia,Tomsk State University, 36, Lenin ave., Tomsk 634050, Russia;

    Novosibirsk State University, 2 Pirogova str., Novosibirsk 630090, Russia,N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Akademik Lavrentiev ave., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    Siberian Research Institute of Geology, Geophysics, and Mineral Resources (SNIIGGiMS), 67, Krasnyi ave., Novosibirsk 630091, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3, Akademik Koptyug ave., Novosibirsk 630090, Russia;

    Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel;

    Government Scientific Institution 'Department of Marine Geology and Sedimentary Ore Formation', National Academy of Sciences of Ukraine, 55B, O. Gonchar Street, Kiev 01601, Ukraine;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrocarbons; Fluid inclusions; Bitumen-rich calcite veins; Petroleum migration; Petroleum source rock; Dead Sea Basin;

    机译:碳氢化合物;流体夹杂物;富含沥青的方解石脉;石油迁移;石油烃源岩;死海盆地;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号