...
首页> 外文期刊>Journal of Applied Physics >Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures
【24h】

Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

机译:电磁耦合驱动的非易失性存储器切换的压电控制和Fe / FSMA多二二二核异质结构中的自冷却效应

获取原文
获取原文并翻译 | 示例
           

摘要

The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr_(0.52)Ti_(0.48)O_3/Ni50Mn_(35)In_(15) (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
机译:最近始终追求了通过控制电动(E-)场的磁力状态和材料自由度的操纵,以开发具有高读/写耐久性的磁电(ME)耦合驱动的电子数据存储设备,快速动态响应,低能量耗散。这种方法的一个主要障碍是开发可靠的材料,该材料应该与普遍的硅(Si)的互补金属氧化物半导体(CMOS)技术相容,同时允许对磁化切换的调谐的小电压。在这方面,在传统的Si基板上交替地生长铁磁性(FM)和铁电(Fe)层的多体性异质结构是希望的,因为通过E场预期磁化切换的压电控制。在这项工作中,我们研究了基于铁磁形状的PBZR_(0.52)Ti_(0.48)O_3 / Ni50mN_(35)In_(15)(PZT / Ni-Mn-In)的多二二异质性状,并研究了它们对CMOS兼容非的潜力-Volatile磁数据存储应用。我们展示了在Si-集成的PZT / Ni-Mn-In薄膜多态异质结构中在室温下在室温下进行电压 - 脉冲控制的非挥发性,可逆和双稳态磁化切换。我们还彻底揭示了这些材料中的各种有趣特征,例如E场调谐ME耦合和磁热效应,形状记忆诱导铁电调制,改善疲劳耐久性以及制冷能力(RC)。这项综合研究表明,这些新颖的材料具有巨大潜力,对具有自冷却效果的无传统纳米级记忆和制冷装置具有巨大潜力,并提高了制冷效率,从而为其应用提供了新的场所。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第8期|084104.1-084104.12|共12页
  • 作者

    Kirandeep Singh; Davinder Kaur;

  • 作者单位

    Functional Nanomaterials Research Lab Department of Physics and Centre of Nanotechnology Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India;

    Functional Nanomaterials Research Lab Department of Physics and Centre of Nanotechnology Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号