...
首页> 外文期刊>Journal of Applied Physics >Real-time distributed monitoring of pressure and shock velocity by ultrafast spectrometry with Chirped Fiber Bragg Gratings: Experimental vs calculated wavelength-to-pressure sensitivities in the range [0-4 GPa]
【24h】

Real-time distributed monitoring of pressure and shock velocity by ultrafast spectrometry with Chirped Fiber Bragg Gratings: Experimental vs calculated wavelength-to-pressure sensitivities in the range [0-4 GPa]

机译:通过Chi光纤布拉格光栅通过超快速光谱法实时分布式监测压力和冲击速度:在[0-4 GPa]范围内的实验对计算的波长至压力灵敏度

获取原文
获取原文并翻译 | 示例
           

摘要

Fiber Bragg Gratings (FBGs) are gaining acceptance as velocity/pressure gauges in the fields of detonation and shock physics on account of their sensitivity, small size, flexibility, electromagnetic immunity, and wavelength-encoded feature. Chirped FBGs (CFBGs) are investigated as wavelengthto- position discriminators with the purpose of monitoring pressure/velocity profiles over a distance range of typically 100 mm. The use of CFBGs simplifies both sensor deployment and data retrieval and finally improves the accuracy due to the increased number of measurement data. In this paper, the metrological performance of CFBGs used as in situ distributed shock pressure/velocity gauges is investigated both theoretically and experimentally in a planar shock loading configuration with an aluminum-based flyer and target. In the intermediate range for shock stress, i. e., less than the Hugoniot Elastic Limit (HEL) of silica, CFBGs provide simultaneous measurements of both shockwave velocity and stress within the target material. A Bragg wavelength-to-stress model is proposed that takes into account (i) the state-of-stress within the target material, (ii) the stress coupling coefficient due to imperfect impedance matching between the target material and the silica fiber, (iii) the conversion of the state-of-stress into a state-of-strain within the silica fiber, and (iv) the conversion of strain data into observable Bragg wavelength shifts. Finally, the model also takes into account the pressure dependence of constitutive parameters for silica and aluminum. Experiments were performed in planar shock loading using CFBGs as stress gauges, bonded along the target axis with Araldite glue. 6061-T6 aluminum flyers were launched at several velocities by a gas gun onto targets of the same material. A free-space Czerny-Turner (CT) spectrometer and an integrated-optics Arrayed-Waveguide Grating (AWG) were both used as dynamic spectrum analyzers. Experimental Bragg wavelength shifts agree well with theoretical predictions for both elastic and hydrodynamic planar shock loading of 6061-T6 aluminum, opening up large perspectives for shock physics experiments. Published by AIP Publishing.
机译:光纤布拉格光栅(FBG)由于其灵敏性,小尺寸,柔韧性,电磁抗扰性和波长编码特性,在爆轰和冲击物理学领域已成为速度/压力计的认可。 rp FBG(CFBG)作为波长到位置的鉴别器进行了研究,目的是监视通常在100 mm距离范围内的压力/速度分布。 CFBG的使用简化了传感器的部署和数据检索,并由于增加了测量数据的数量而最终提高了准确性。在本文中,在具有铝基飞轮和目标的平面冲击载荷配置中,从理论上和实验上研究了用作现场分布式冲击压力/速度计的CFBG的计量性能。在冲击应力的中间范围,即。例如,CFBG小于二氧化硅的Hugoniot弹性极限(HEL),可同时测量目标材料内的冲击波速度和应力。提出了布拉格波长应力模型,该模型考虑了(i)目标材料内的应力状态,(ii)由于目标材料与二氧化硅纤维之间阻抗匹配不完善而导致的应力耦合系数,( iii)在石英纤维内将应力状态转换为应变状态,以及(iv)将应变数据转换为可观察到的布拉格波长位移​​。最后,该模型还考虑了二氧化硅和铝的本构参数对压力的依赖性。使用CFBG作为应力计,在平面冲击载荷下进行了实验,并使用Araldite胶沿目标轴粘结。 6061-T6铝制传单通过气枪以多种速度发射到相同材料的目标上。自由空间的Czerny-Turner(CT)光谱仪和集成光学阵列波导光栅(AWG)均用作动态频谱分析仪。布拉格波长的实验位移与6061-T6铝的弹性和流体动力平面冲击载荷的理论预测非常吻合,为冲击物理实验开辟了广阔的前景。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第14期|145902.1-145902.25|共25页
  • 作者单位

    CEA, LIST, Lab Capteurs Architectures Elect, F-91191 Gif Sur Yvette, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CEA, DAM, CEA GRAMAT, F-46500 Gramat, France;

    CRB, ArianeGrp, F-91710 Vert Le Petit, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号