...
首页> 外文期刊>Journal of Applied Physics >Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment
【24h】

Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

机译:通过超保形化学气相沉积填充高深宽比沟槽:预测模型和实验

获取原文
获取原文并翻译 | 示例
           

摘要

Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the Ⅴ shape. Experimentally, for the Mg(DMADB)_2/H_2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The ballistic transport model predicts a deeper position for the peak of the super-conformal growth rate than the diffusion-reaction model, and successfully explains the observation of complete filling. These models can be used to predict the behavior of any system given a small set of kinetic coefficients to describe the growth rate.
机译:在纳米技术制造的许多领域,用第二种材料完全填充深凹结构是一个挑战。一种新发现的超保形涂层方法,可用于将前体与共反应物结合使用的化学气相沉积系统,可以解决此问题。然而,填充是动态过程,其中沟槽逐渐变窄并且纵横比(AR)增加。这减少了沟槽内的物质扩散,并可能使组件的分压超出用于超保形涂层的范围。因此,我们得出了两个可以预测填充可能性的理论模型。首先,我们重塑了具有可变锥角的侧壁情况下的扩散反应方程式。这提供了有效AR的定义,由于减少了物种迁移,有效AR高于标称AR。然后我们得出超保形涂层和保形涂层的涂层轮廓。填充过程中的关键步骤(最困难的步骤)发生在侧壁在沟槽底部合并形成Ⅴ形时。实验上,对于Mg(DMADB)_2 / H_2O系统和起始AR = 9,此模型预测不可能完成完全填充,而在实验上我们确实获得了完全填充。然后,我们假设物种的掠射角,远距离运输可能是造成比预料的更好的原因。为了说明物种运输的可变范围,我们构建了弹道运输模型。这包括了结构外部的入射通量,表面余弦定律的重新发射以及内部表面之间的视线传输。我们将沟槽内所有位置之间的传输概率转换为一个矩阵,该矩阵表示一个碰撞周期后通量的重新分布。然后,矩阵运算提供了一种计算有效的方法,可以确定给定锥角的稳态通量分布和增长率。弹道运输模型预测的超共形生长速率峰值比扩散反应模型更深,并成功解释了完全填充的观察结果。给定一小组描述生长速率的动力学系数,这些模型可用于预测任何系统的行为。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第19期|194508.1-194508.8|共8页
  • 作者单位

    Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St, Urbana, Illinois 61801, USA;

    Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St, Urbana, Illinois 61801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号