首页> 外文期刊>Journal of Analytical Atomic Spectrometry >Zirconium stable isotope analysis of zircon by MC-ICP-MS: methods and application to evaluating intra-crystalline zonation in a zircon megacryst
【24h】

Zirconium stable isotope analysis of zircon by MC-ICP-MS: methods and application to evaluating intra-crystalline zonation in a zircon megacryst

机译:通过MC-ICP-MS的锆稳定同位素分析:MC-ICP-MS:方法和应用于在锆石甲锭中评价结晶内分区的方法和应用

获取原文
获取原文并翻译 | 示例
           

摘要

Zirconium (Zr) plays a key role in the development of phases like zircon (ZrSiO_4) and baddeleyite (ZrO_2) in magmatic systems. These minerals are crucial for the study of geologic time and crustal evolution, and their high resistivity to weathering and erosion results in their preservation on timescales of billions of years. Although zircon and baddeleyite may also preserve a robust record of Zr isotope behavior in high-temperature terrestrial environments, little is known about the factors that control Zr isotope partitioning in magmatic systems, the petrogenetic significance of fractionated compositions, or how these variations are recorded in Zr-rich accessory phases. Here, we describe a new analytical protocol for accurately determining the Zr stable isotope composition of zircon by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), using the double-spike method to correct for procedural and instrumental mass bias. We apply this technique to test whether zircon crystallization in carbonatite magmatic systems is a driver of Zr isotope fractionation by interrogating the internal zonation of a zircon megacryst from the Mud Tank carbonatite (MTUR1). We find the MTUR1 megacryst to lack internal zoning within analytical uncertainties with a mean μ~(94/90)Zr_(NIST) = -55 ± 28 ppm (2 SD, n = 151), which suggests that zircon crystallization is not a driver of Zr isotope fractionation in carbonatite magmas. This observation is in stark contrast with those made in silicate magmatic systems, raising the possibility that the bonding environment of Zr~(4+) ions may be fundamentally different in carbonatite vs. silicate melts. Because of its remarkable homogeneity, the MTUR1 megacryst is an ideal natural reference material for Zr isotopic analysis of zircon using both solution and spatially resolved methods. The reproducibility of a pure Zr solution and our chemically purified zircon fractions indicate that the external reproducibility of our method is on the order of ±28 ppm for μ~(94/90)Zr, or ±7 ppm per amu, at 95% confidence.
机译:锆(ZR)在岩浆系统中的锆浦(Zrsio_4)和Baddeleyite(ZrO_2)的阶段发挥作用中起着关键作用。这些矿物质对于研究地质时间和地壳演化来说至关重要,以及对耐候和侵蚀的高电阻率导致它们在数十亿岁的时间上的保存。虽然锆石和Baddeleyite还可以在高温陆地环境中保持Zr同位素行为的稳健记录,但关于控制岩石系统中的Zr同位素分配的因素,分级组合物的细胞意义或这些变化如何记录这些因素富含Zr的配件阶段。在这里,我们描述了一种新的分析方案,用于通过多孔电感耦合等离子体质谱(MC-ICP-MS)准确地确定锆石的Zr稳定同位素组成,使用双尖峰方法来校正程序和仪器质量偏压。我们应用该技术来测试碳酸石岩石系统中锆石结晶是否是Zr同位素分馏的驱动器,通过询问锆罐碳酸盐石(MTUR1)的锆石芒果的内部分区。我们发现MTUR1 Megacrysts在分析不确定因素内缺乏内部分区,平均μ〜(94/90)Zr_(nist)= -55±28ppm(2 sd,n = 151),这表明锆石结晶不是驾驶员碳酸岩岩浆岩浆同位素分馏的研究。该观察结果与硅酸盐岩浆系统中制成的那些观察结果呈现,提高了Zr〜(4 +)离子的粘合环境在碳酸盐盐与硅酸盐熔体中的基本不同的可能性。由于其卓越的均匀性,MTUR1甲酰基是使用溶液和空间分辨的方法的ZrCon Zr同位素分析的理想自然参考材料。纯Zr溶液的再现性和我们的化学纯化的锆级分数表明,我们的方法的外部再现性为μ〜(94/90)Zr的±28ppm,或每AMU±7 ppm,95%的信心。

著录项

  • 来源
    《Journal of Analytical Atomic Spectrometry》 |2020年第6期|1167-1186|共20页
  • 作者单位

    Department of Earth and Environmental Sciences University of Rochester Rochester NY 14627 USA The Isotoparium Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA 91125 USA;

    Department of Earth and Environmental Sciences University of Rochester Rochester NY 14627 USA;

    Department of Earth and Environmental Sciences University of Rochester Rochester NY 14627 USA;

    The Isotoparium Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA 91125 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号