首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Chain elongation during thermolysis of tetrafluoroethylene and hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation of data needs
【24h】

Chain elongation during thermolysis of tetrafluoroethylene and hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation of data needs

机译:四氟乙烯和六氟丙烯热解过程中的链伸长:机理假设建模和数据需求阐明

获取原文
获取原文并翻译 | 示例
           

摘要

Thermolysis of tetrafluoroethylene at <500 C is well-known to lead to equilibration with octafluorocy-clobutane; at≈600℃ this mixture forms hexafluoropropylene; and at slightly more forcing conditions the latter is converted to octafluoroisobutylene (and/or octafluoro-2-butene). This chain-elongation behav-ior contrasts with the familiar cracking of non-fluorinated olefins and the thermodynamic rationale is provided herein. Several mechanisms have been proposed in the literature without a clear choice. Kinetic modeling herein of available product/kinetic data with use of current thermochemical and kinetic param-eters supports a key role for difluorocarbene formed from dissociation of tetrafluoroethylene. Arbitrary selection between unfortunately inconsistent available measurements and/or computations of elemen-tary rate constants, with modest adjustments, allowed data matches with either a direct insertion into an olefinic C-F bond or an addition to the olefin to give a 1,3-biradical followed by a 1,2-fluorine shift. In contrast, a 1,2-fluorine shift in the starting olefin to generate a carbene, followed by carbene combination, seems unlikely. However, the modeling was only partially successful, especially for hexafluoropropylene as feed which seems a comparatively inefficient source of difluorocarbene. This highlights the need for improved experimental thermolysis data at low conversion, independent elementary rate constants for key steps, and enthalpies of formation of fluorocarbons and their reactive intermediates, especially C_3F_6.
机译:众所周知,在<500°C的温度下四氟乙烯的热解会导致与八氟环丁烷平衡。在≈600℃下,该混合物形成六氟丙烯;在强力条件下,后者转化为八氟异丁烯(和/或八氟-2-丁烯)。该链伸长行为与常见的非氟化烯烃的裂解相反,并且本文提供了热力学原理。文献中已经提出了几种机制,但没有明确的选择。本文使用当前的热化学和动力学参数对可用产物/动力学数据进行的动力学建模支持了由四氟乙烯解离形成的二氟卡宾的关键作用。不幸的是,在进行适度调整的情况下,在可选的不一致的可用测量值和/或电子速率常数的计算之间进行任意选择,可以使数据与直接插入到烯烃CF键中或添加到烯烃中以匹配1,3双自由基相匹配。通过1,2-氟转移。相反,似乎不太可能在起始烯烃中发生1,2-氟转移以生成卡宾,然后进行卡宾组合。但是,建模仅部分成功,尤其是对于六氟丙烯作为进料,这似乎是二氟卡宾的一种相对低效的来源。这突出显示了在低转化率,关键步骤的独立元素速率常数以及碳氟化合物及其反应性中间体(尤其是C_3F_6)形成的焓方面需要改进的实验热解数据的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号