首页> 外文期刊>Journal of Aircraft >Bubble Burst Control Using Smart Structure Sensor Actuators for Stall Suppression
【24h】

Bubble Burst Control Using Smart Structure Sensor Actuators for Stall Suppression

机译:使用智能结构传感器执行器进行失速抑制的气泡破裂控制

获取原文
获取原文并翻译 | 示例
       

摘要

AFTER the laminar boundary layer separates from the airfoilnsurface, the flow can reattach to the surface as a turbulent shearnlayer. The region between the laminar separation and thenreattachment is called a laminar separation bubble [1]. Dependingnon the chordwise extent of the laminar separation bubble, it can benclassified as a short bubble or a long bubble. Once the short bubblenfails to reattach on the airfoil surface, which is commonly known asnshort-bubble burst, this causes the airfoil to stall abruptly. Methodsndo exist to predict the short bubble [2]. Active flow control methodsnsuch as oscillatory blowing [3], plasma [4], and piezoelectric [5]nactuators are useful methods for flow separation delay. Previousnstudies conducted by Rinoie et al. [6], the control of the short-bubblenburst was proposed. Their work considered the control of thenseparated shear layer development artificially and their experimentalnresults confirmed that the use of a thin plate placed on a NACA 0012nairfoil was effective for suppression of laminar separation-bubblenburst formed on the leading edge of the airfoil and increased both thenstall angle and the maximum lift coefficient (approximately 10%nincrement, as compared with the clean airfoil) at a chord Reynoldsnnumber of 1:3 u0001 105n. The particle image velocimetry data alsonrevealed that the vortical structures originated from Kelvin–nHelmholtz instability inside the separated shear layer are enhancednby those formed at the trailing edge of the plate, and this forces thenseparated shear layer to reattach downstream of the plate. Morenrecently, the effectiveness of both the thin and rectangular plates wasnexamined [7] on a NACA 631-012 airfoil at a chord Reynoldsnnumber of 1:3 u0001 105n. Themaximumlift coefficient of the airfoilwithnplate attachment (obtained from the total force measurements) wasnapproximately 17% higher than the value of the clean airfoil (i.e.,
机译:在层流边界层与翼型表面分离之后,流可以作为湍流的剪切层重新附着到表面。层分离和再附着之间的区域称为层分离气泡[1]。取决于层流分离气泡的弦向范围,可以将其分为短气泡或长气泡。一旦短气泡未能重新附着在机翼表面上(通常称为短气泡破裂),这将导致机翼突然失速。目前还没有方法可以预测短气泡[2]。主动流控制方法,例如振荡吹气[3],等离子[4]和压电[5]致动器是用于流分离延迟的有用方法。 Rinoie等人进行的以前的研究。 [6],提出了控制短气泡爆发的方法。他们的工作人为地考虑了对分离剪切层发展的控制,他们的实验结果证实,使用薄板放置在NACA 0012翼型上可以有效地抑制翼型前缘形成的层状分离-起泡现象,并增加失速角和当弦雷诺数为1:3 u0001 105n时,最大升力系数(与干净的机翼相比,大约增加10%)。粒子图像测速数据还表明,由分离的剪切层内部的Kelvin–nHelmholtz不稳定性引起的涡旋结构被板后缘形成的涡旋结构增强,这迫使分离的剪切层重新附着在板的下游。最近,在NACA 631-012机翼上,雷诺数为1:3 u0001 105n时,薄板和矩形板的有效性都被[nexamine] [7]。附有翼板的翼型的最大提升系数(从总力测量中获得)比清洁翼型的值(即,

著录项

  • 来源
    《Journal of Aircraft》 |2010年第4期|p.1439-1442|共4页
  • 作者

    Chi Wai Wong; Kenichi Rinoie;

  • 作者单位

    University of Tokyo, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:06:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号