...
首页> 外文期刊>Iranian polymer journal >Mechanical modeling of silk fibroin/TiO_2 and silk fibroin/fluoridated TiO_2 nanocomposite scaffolds for bone tissue engineering
【24h】

Mechanical modeling of silk fibroin/TiO_2 and silk fibroin/fluoridated TiO_2 nanocomposite scaffolds for bone tissue engineering

机译:用于骨组织工程的丝素蛋白/ TiO_2和丝素蛋白/氟化TiO_2纳米复合支架的力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Biocompatible and biodegradable three-dimensional scaffolds are commonly porous which serve to provide suitable microenvironments for mechanical supporting and optimal cell growth. Silk fibroin (SF) is a natural and biomedical polymer with appropriate and improvable mechanical properties. Making a composite with a bioceramicas reinforcement is a general strategy to prepare a scaffold for hard tissue engineering applications. In the present study, SF was separately combined with titanium dioxide (TiO2) and fluoridated titanium dioxide nanoparticles (TiO2-F) as bioceramic reinforcements for bone tissue engineering purposes. At the first step, SF was extracted from Bombyx mori cocoons. Then, TiO2 nanoparticles were fluoridated by hydrofluoric acid. Afterward, SF/TiO2 and SF/TiO2-F nanocomposite scaffolds were prepared by freeze-drying method to obtain a porous microstructure. Both SF/TiO2 and SF/TiO2-F scaffolds contained 0, 5, 10, 15 and 20 wt% nanoparticles. To evaluate the efficacy of nanoparticles addition on the mechanical properties of the prepared scaffolds, their compressive properties were assayed. Likewise, the pores morphology and microstructure of the scaffolds were investigated using scanning electron microscopy. In addition, the porosity and density of the scaffolds were measured according to the Archimedes' principle. Afterward, compressive modulus and microstructure of the prepared scaffolds were evaluated and modeled by Gibson-Ashby's mechanical models. The results revealed that the compressive modulus predicted by the mechanical model exactly corresponds to the experimental one. The modeling approved the honeycomb structure of the prepared scaffolds which possess interconnected pores.
机译:具有生物相容性且可生物降解的三维支架通常是多孔的,可为机械支撑和最佳细胞生长提供合适的微环境。丝素蛋白(SF)是一种天然的生物医学聚合物,具有适当且可改善的机械性能。用生物陶瓷增强材料制成复合材料是制备用于硬组织工程应用的支架的一般策略。在本研究中,SF分别与二氧化钛(TiO2)和氟化二氧化钛纳米颗粒(TiO2-F)组合在一起用作骨组织工程用途的生物陶瓷增强剂。第一步,从桑蚕茧中提取SF。然后,用氢氟酸对TiO2纳米颗粒进行氟化。然后,通过冷冻干燥法制备了SF / TiO2和SF / TiO2-F纳米复合支架,得到了多孔的微观结构。 SF / TiO2和SF / TiO2-F支架均包含0、5、10、15和20 wt%的纳米颗粒。为了评估纳米颗粒添加对制备的支架的机械性能的功效,测定了它们的压缩性能。同样,使用扫描电子显微镜研究了支架的孔形态和微观结构。此外,根据阿基米德原理测量支架的孔隙率和密度。然后,通过Gibson-Ashby的力学模型对制备的支架的压缩模量和微观结构进行评估和建模。结果表明,力学模型预测的压缩模量与实验值完全吻合。该模型批准了所制备的具有互连孔的支架的蜂窝结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号