首页> 外文期刊>International journal for uncertainty quantifications >ON TRANSFER LEARNING OF NEURAL NETWORKS USING BI-FIDELITY DATA FOR UNCERTAINTY PROPAGATION
【24h】

ON TRANSFER LEARNING OF NEURAL NETWORKS USING BI-FIDELITY DATA FOR UNCERTAINTY PROPAGATION

机译:关于使用双保定数据进行神经网络的转移学习,以进行不确定性传播

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their high degree of expressiveness, neural networks have recently been used as surrogate models for mapping inputs of an engineering system to outputs of interest. Once trained, neural networks are computationally inexpensive to evaluate and remove the need for repeated evaluations of computationally expensive models in uncertainty quantification applications. However, given the highly parameterized construction of neural networks, especially deep neural networks, accurate training often requires large amounts of simulation data that may not be available in the case of computationally expensive systems. In this paper, to alleviate this issue for uncertainty propagation, we explore the application of transfer learning techniques using training data generated from both high- and low fidelitymodels. We explore two strategies for coupling these two datasets during the training procedure, namely, the standard transfer learning and the bi-fidelity-weighted learning. In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low fidelitydata. The high-fidelity data are then used to adapt the parameters of the upper layer(s) of the low fidelitynetwork, or train a simpler neural network to map the output of the low fidelitynetwork to that of the high-fidelity model. In the latter approach, the entire low fidelitynetwork parameters are updated using data generated via a Gaussian process model trained with a small high-fidelity dataset. The parameter updates are performed via a variant of storhastir gradient descent with learning rates given by the Gaussian process model. Using three numerical examples, we illustrate the utility of these bi-fidelity transfer learning methods where we focus on accuracy improvement achieved by transfer learning over standard training approaches.
机译:由于它们的高度表现力,最近被用作替代模型,用于将工程系统的输入映射到感兴趣的输出。一旦训练,神经网络都是计算地廉价的,以评估和消除对不确定量化应用中的计算昂贵模型的重复评估的需求。然而,鉴于神经网络的高度参数化构造,特别是深度神经网络,准确的培训通常需要大量的模拟数据,在计算昂贵的系统的情况下可能无法使用。在本文中,为了缓解这种问题的不确定传播,我们使用高保真和低保真显示的培训数据探讨转移学习技术的应用。我们探索在培训程序期间耦合这两个数据集的两种策略,即标准转移学习和双保控度学习。在前一种方法中,基于低保真数据训练将输入映射到感兴趣的输出的神经网络模型。然后使用高保真数据来调整低保真网络的上层的参数,或者培训更简单的神经网络以将低保真网络的输出映射到高保真模型的输出。在后一种方法中,使用通过使用小型高保真数据集训练的高斯过程模型生成的数据更新整个低保真网络参数。参数更新通过Storhastir梯度下降的变体来执行,通过高斯过程模型给出的学习速率。使用三个数值示例,我们说明了这些双保性转移学习方法的效用,我们专注于通过在标准培训方法转移学习实现的准确性改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号