首页> 外文期刊>International journal of hydrogen energy >Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production
【24h】

Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production

机译:生物油中三种模型化合物的水相重整用于制氢的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Thermodynamic analysis with Gibbs free energy minimization was performed for aqueous phase reforming of methanol, acetic acid, and ethylene glycol as model compounds for hydrogen production from bio-oil. The effects of the temperature (340-660 K) and pressure ratio P_(Sys)/PH_2O (0.1-2.0) on the selectivity of H_2 and CH_4, formation of solid carbon, and conversion of model compounds were analyzed. The influences of CaO and O_2 addition on the formation of H_2, CH_4, and CO_2 in the gas phase and solid phase carbon, CaCO_3, and Ca(OH)_2 were also investigated. With methanation and carbon formation, the conversion of the model compounds was >99.99% with no carbon formation, and methanation was thermodynamically favored over hydrogen production. H_2 selectivity was greatly improved when methanation was suppressed, but most of the inlet model compounds formed solid carbon. After suppressing both methanation and carbon formation, aqueous phase reforming of methanol, acetic acid and ethylene glycol at 500 K and with P_(sys)/PH_2O = 11 gave H_2 selectivity of 74.98%, 66.64% and 71.38%, respectively. These were similar to the maximum stoichiometric hydrogen selectivity of 75.00% (methanol), 66.67% (acetic acid), and 71.43% (ethylene glycol). At 500 K and 2.90 MPa, as the molar ratio of CaO/BMCs increased, the normalized variation in H_2 increased and that for CH_4 decreased. Formation of solid carbon was effectively suppressed by addition of O_2, but this was at the expense of H_2 formation. With the O_2/BMCs molar ratio regulated at 1.0, oxidation and CO_2 capture increased the normalized variation in H_2 to 33.33% (methanol), 50.00% (acetic acid), and 60.00% (ethylene glycol), and the formation of solid carbon decreased to zero.
机译:进行了吉布斯自由能最小化的热力学分析,以甲醇,乙酸和乙二醇为模型相化合物进行水相重整,以从生物油中制氢。分析了温度(340-660 K)和压力比P_(Sys)/ PH_2O(0.1-2.0)对H_2和CH_4的选择性,固体碳的形成以及模型化合物转化率的影响。还研究了CaO和O_2的添加对气相中H_2,CH_4和CO_2,固相碳,CaCO_3和Ca(OH)_2形成的影响。在甲烷化和碳形成的情况下,模型化合物的转化率> 99.99%,而没有碳形成,甲烷化在热力学上优于产氢。抑制甲烷化时,H_2的选择性大大提高,但大多数进口模型化合物均形成了固体碳。在抑制甲烷化和碳形成的同时,甲醇,乙酸和乙二醇在500 K且P_(sys)/ PH_2O = 11的水相重整分别得到H_2选择性为74.98%,66.64%和71.38%。这些类似于最大化学计量氢选择性75.00%(甲醇),66.67%(乙酸)和71.43%(乙二醇)。在500 K和2.90 MPa下,随着CaO / BMCs摩尔比的增加,H_2的归一化变化增大,而CH_4的归一化变化减小。通过加入O_2可有效抑制固体碳的形成,但这是以H_2形成为代价的。在O_2 / BMCs摩尔比调节为1.0的情况下,氧化和CO_2捕获将H_2的归一化变化增加到33.33%(甲醇),50.00%(乙酸)和60.00%(乙二醇),并且减少了固体碳的形成。归零。

著录项

  • 来源
    《International journal of hydrogen energy》 |2011年第24期|p.15561-15572|共12页
  • 作者单位

    Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;

    Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;

    Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;

    Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;

    Department of Chemical Engineering, The University of Western Ontario, London N6A5B9, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bio-oil; aqueous phase reforming; hydrogen production; thermodynamic analysis; sorption enhanced; oxidation;

    机译:生物油水相重整;制氢热力学分析;吸附增强;氧化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号