首页> 外文期刊>International journal of hydrogen energy >Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: A theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming)
【24h】

Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: A theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming)

机译:集成了沼气化学回路重整处理器的PEMFC系统的性能:理论分析和与其他燃料处理器的比较(蒸汽重整,部分氧化和自热重整)

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the performance of a PEMFC (proton exchange membrane fuel cell) system integrated with a biogas chemical looping reforming processor is analyzed. The global efficiency is investigated by means of a thermodynamic study and the application of a generalized steady-state electrochemical model. The theoretical analysis is carried out for the commercial fuel cell BCS 500W stack. From literature, chemical looping reforming (CLR) is described as an attractive process only if the system operates at high pressure. However, the present research shows that advantages of the CLR process can be obtained at atmospheric pressure if this technology is integrated with a PEMFC system. The performance of a complete fuel cell system employing a fuel processor based on CLR technology is compared with those achieved when conventional fuel processors (steam reforming (SR), partial oxidation (PO) and auto-thermal reforming (ATR)) are used. In the first part of this paper, the Gibbs energy minimization method is applied to the unit comprising the fuel- and air-reactors in CLR or to the reformer (SR, PO, ATR). The goal is to investigate the characteristics of these different types of reforming process to generate hydrogen from clean model biogas and identify the optimized operating conditions for each process. Then, in the second part of this research, material and energy balances are solved for the complete fuel cell system processing biogas, taking into account the optimized conditions found in the first part. The overall efficiency of the PEMFC stack integrated with the fuel processor is found to be dependent on the required power demand. At low loads, efficiency is around 45%, whereas, at higher power demands, efficiencies around 25% are calculated for all the fuel processors. Simulation results show that, to generate the same molar flow-rate of H_2 to operate the PEMFC stack at a given current, the global process involving SR reactor is by far much more energy demanding than the other technologies. In this case, biogas is burnt in a catalytic combustor to supply the energy required, and there is a concern with respect to CO_2 emissions. The use of fuel processors based on CLR, PO or ATR results in an auto-thermal global process. If CLR based fuel processor is employed, CO_2 can be easily recovered, since air is not mixed with the reformate. In addition, the highest values of voltage and power are achieved when the PEMFC stack is fed on the stream coming from SR and CLR fuel processors. When a H_2 mixture is produced by reforming biogas through PO and ATR technologies, the relative anode overpotential of a single cell is about 55 mV, whereas, with the use of CLR and SR processes, this value is reduced to ~ 37 and 24 mV, respectively. In this way, CLR can be seen as an advantageous reforming technology, since it allows that the global process can be operated under auto-thermal conditions and, at the same time, it allows the PEMFC stack to achieve values of voltage and power closer to those obtained when SR fuel processors are used. Thus, efforts on the development of fuel processors based on CLR technology operating at atmospheric pressure can be considered by future researchers. In the case of biogas, the CO_2 captured can produce additional economical benefits in a 'carbon market'.
机译:在这项工作中,分析了与沼气化学回路重整处理器集成的PEMFC(质子交换膜燃料电池)系统的性能。通过热力学研究和广义稳态电化学模型的应用研究整体效率。对商用燃料电池BCS 500W堆进行了理论分析。根据文献,仅当系统在高压下运行时,化学环重整(CLR)被描述为有吸引力的过程。但是,本研究表明,如果该技术与PEMFC系统集成,则可以在大气压下获得CLR工艺的优势。将使用基于CLR技术的燃料处理器的完整燃料电池系统的性能与使用常规燃料处理器(蒸汽重整(SR),部分氧化(PO)和自热重整(ATR))时所获得的性能进行比较。在本文的第一部分中,吉布斯能量最小化方法应用于CLR中包含燃料和空气反应器的单元或重整器(SR,PO,ATR)。目的是研究这些不同类型的重整过程的特征,以从干净的模型沼气中产生氢气,并确定每个过程的最佳操作条件。然后,在本研究的第二部分中,考虑到在第一部分中找到的优化条件,解决了完整的燃料电池系统处理沼气的材料和能量平衡。发现与燃料处理器集成在一起的PEMFC堆的整体效率取决于所需的功率需求。在低负载下,效率约为45%,而在较高功率要求下,所有燃料处理器的效率约为25%。仿真结果表明,要产生相同的H_2摩尔流量以在给定电流下运行PEMFC电池组,涉及SR反应器的全局过程比其他技术对能量的需求要高得多。在这种情况下,沼气在催化燃烧器中燃烧以提供所需的能量,并且与CO_2排放有关。使用基于CLR,PO或ATR的燃料处理器会导致自动热全局过程。如果采用基于CLR的燃料处理器,则由于空气不会与重整产品混合,因此可以轻松回收CO_2。此外,当PEMFC堆被馈送到来自SR和CLR燃料处理器的流上时,可实现最高的电压和功率值。当通过PO和ATR技术重整沼气产生H_2混合物时,单个电池的相对阳极过电势约为55 mV,而使用CLR和SR工艺时,该值降低到〜37和24 mV,分别。这样,CLR可以看作是一种有利的重整技术,因为它允许全局过程可以在自动热条件下运行,同时,它还可以使PEMFC堆栈获得更接近于电压和功率的值使用SR燃料处理器时获得的结果。因此,未来的研究人员可以考虑开发基于在大气压下运行的CLR技术的燃料处理器。就沼气而言,捕获的CO_2可以在“碳市场”中产生额外的经济效益。

著录项

  • 来源
    《International journal of hydrogen energy》 |2012年第8期|p.6580-6600|共21页
  • 作者单位

    Program of Postgraduate Studies in Mining, Metals and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul - UFRGS,Campus do Vale, Setor 4, Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil;

    Program of Postgraduate Studies in Mining, Metals and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul - UFRGS,Campus do Vale, Setor 4, Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil;

    Program of Postgraduate Studies in Mining, Metals and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul - UFRGS,Campus do Vale, Setor 4, Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biogas; reforming process; chemical looping; thermodynamic analysis; material and energy balance; PEMFC system;

    机译:沼气改革过程;化学循环热力学分析;材料和能量平衡;PEMFC系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号