首页> 外文期刊>International journal of hydrogen energy >An advanced numerical model for energy conversion and crack growth predictions in Solid Oxide Fuel Cell units
【24h】

An advanced numerical model for energy conversion and crack growth predictions in Solid Oxide Fuel Cell units

机译:固体氧化物燃料电池单元能量转换和裂纹扩展预测的高级数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

A dynamic mathematical model capable of predicting the energy conversion and crack propagation in Solid Oxide Fuel Cell (SOFC) unit is developed. Finite Element Method (FEM) and eXtended Finite Element Method (XFEM) are used to solve the multiphysics phenomenon taking place in the SOFC during service. A pre-existing crack is assumed lying within one of the cell's porous electrodes and far from the cell's electrochemically active sites (electrodes/electrolyte interfaces), and thus it is assumed to not affect the electrochemical reactions. The pre-existing crack propagates instantaneously once the crack-tip equivalent stress intensity factor (SIF) overcomes the porous electrode material toughness. Due to their small opening, cracks are assumed to affect only the heat conduction within the solid phase of the porous electrodes. The coupled fluid flow, fluid's energy transfer in the porous electrodes, and mass transport are solved using advanced FEM based schemes, where transition between SOFC interfaces (mainly porous electrodes/flow channels) does not require any special treatment. The heat transfer in the solid phase of the porous electrodes and the thermo-mechanical problem are solved using the XFEM. The predicted energy conversion is validated using experiments from the literature as well as our previously published experiments U. Power Sources 272 (2014) 233-238]. The developed FEM/XFEM numerical tool is used to investigate the effect of temperature gradients on the propagation path of a pre-existing crack within an anode-supported SOFC. The crack propagation path is found to depend on the position of the pre-existing crack relative the SOFC interfaces as well as its initial orientation. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:建立了能够预测固体氧化物燃料电池(SOFC)单元中能量转换和裂纹扩展的动态数学模型。有限元方法(FEM)和扩展有限元方法(XFEM)用于解决服务期间SOFC中发生的多物理现象。假定存在一个预先存在的裂纹,该裂纹位于电池的一个多孔电极中,并且远离电池的电化学活性位点(电极/电解质界面),因此认为该裂纹不影响电化学反应。一旦裂纹尖端的等效应力强度因子(SIF)克服了多孔电极材料的韧性,预先存在的裂纹即刻传播。由于其很小的开口,因此认为裂纹仅影响多孔电极固相内的热传导。使用先进的基于FEM的方案解决了耦合的流体流动,流体在多孔电极中的能量传递以及质量传输的问题,其中SOFC接口(主要是多孔电极/流动通道)之间的过渡不需要任何特殊处理。使用XFEM解决了多孔电极固相中的热传递和热机械问题。使用来自文献的实验以及我们先前发表的实验U. Power Sources 272(2014)233-238]验证了预测的能量转换。开发的FEM / XFEM数值工具用于研究温度梯度对阳极支撑的SOFC内预先存在的裂纹的传播路径的影响。发现裂纹的传播路径取决于现有裂纹相对于SOFC界面的位置及其初始方向。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2015年第46期|16509-16520|共12页
  • 作者单位

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg|Univ Strasbourg, EOST, CNRS, Lab Hydrol & Geochim, F-67084 Strasbourg, France;

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg|Univ La Laguna, Dept Quim Inorgan, Tenerife 38200, Spain;

    Univ La Laguna, Dept Quim Inorgan, Tenerife 38200, Spain;

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg;

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg;

    Univ Strasbourg, EOST, CNRS, Lab Hydrol & Geochim, F-67084 Strasbourg, France;

    Univ La Laguna, Dept Quim Inorgan, Tenerife 38200, Spain;

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg;

    Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SOFC; Multiphysics; Crack; FEM/XFEM;

    机译:SOFC;多物理场;裂缝;FEM / XFEM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号