首页> 外文期刊>International journal of hydrogen energy >Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design
【24h】

Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design

机译:通过有效的电池设计,使碱性电解池的欧姆电阻最小化

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency of an alkaline electrolysis cell depends strongly on its internal cell resistance, which becomes the dominant efficiency driver at high current densities. This paper uses Electrochemical Impedance Spectroscopy to decouple the ohmic resistance from the cell voltage, and, for the first time, quantify the reduction in cell resistance achieved by employing a zero gap cell configuration when compared to the conventional approach. A 30% reduction in ohmic resistance is demonstrated for the zero gap cell when compared to a more conventional design with a 2 mm electrode gap (in 1 M NaOH and at standard conditions). The effect on the ohmic resistance of operating parameters, including current density and temperature, is quantified; the zero gap cell outperforms the standard cell at all current densities, particularly above 500 mA.cm(-2) Furthermore, the effect of electrode morphology on the ohmic resistance is investigated, showing that high surface area foam electrodes permit a lower ohmic resistance than coarser mesh electrodes. These results show that zero gap cell design will allow both low cost and highly efficient alkaline electrolysis, which will become a key technology for short term and inter-seasonal energy storage and accelerate the transition towards a decarbonised society. Crown Copyright (C) 2017 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. All rights reserved.
机译:碱性电解池的效率在很大程度上取决于其内部的池电阻,这在高电流密度下成为主要的效率驱动因素。本文使用电化学阻抗谱技术将欧姆电阻与电池电压解耦,并首次量化了与传统方法相比采用零间隙电池配置所实现的电池电阻降低。与具有2 mm电极间隙(在1 M NaOH和标准条件下)的更常规设计相比,零间隙电池的欧姆电阻降低了30%。量化对包括电流密度和温度在内的工作参数对欧姆电阻的影响;零间隙电池在所有电流密度下均优于标准电池,尤其是在500 mA.cm(-2)以上时。此外,研究了电极形态对欧姆电阻的影响,显示高表面积的泡沫电极允许的欧姆电阻低于较粗的网状电极。这些结果表明,零间隙电池设计将实现低成本和高效的碱性电解,这将成为短期和季节性储能的关键技术,并加速向脱碳社会的过渡。官方版权(C)2017,由Elsevier Ltd代表Hydrogen Energy Publications LLC发布。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号