...
首页> 外文期刊>International journal of hydrogen energy >Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients
【24h】

Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients

机译:具有浓度梯度的氢-空气混合物中火焰加速和爆燃-爆轰过渡的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The present study aims to test the capability of our newly developed density-based solver, ExplosionFoam, for flame acceleration (FA) and deflagration-to-detonation transition (DDT) in mixtures with concentration gradients which is of important safety concern. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM (R) and uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [7], which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position, speed and pressure profiles. Qualitatively, the numerical simulations have reproduced well the flame acceleration and DDT phenomena observed in the experiment. The results have revealed that in the computed cases, DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion, but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can be potentially re-ignited once more fresh air is available in an accidental scenario, resulting in subsequent explosions. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本研究旨在测试我们新开发的基于密度的求解器ExplosionFoam在具有浓度梯度的混合物中对火焰加速(FA)和爆燃-引爆过渡(DDT)的能力,这是重要的安全问题。该求解器基于开源计算流体动力学(CFD)平台OpenFOAM(R),使用氢-空气单步化学反应和作者开发的相应输运系数。对Ettner等人的实验装置进行了数值模拟。 [7],它涉及均质氢气-空气混合物以及通道通道中浓度梯度不均匀的混合物中的火焰加速和滴滴涕。这些预测表明在火焰尖端位置,速度和压力分布图上与实验测量结果具有良好的定量一致性。定性地,数值模拟很好地再现了实验中观察到的火焰加速和DDT现象。结果表明,在计算的情况下,DDT是由前体惰性冲击波与接近高氢浓度的壁而不是与障碍物的相互作用引起的。由于障碍物和燃烧引起的膨胀引起的气流之间的相互作用,一些涡流对出现在火焰的前面,但是在火焰穿过障碍物后很快消失。氢不能被完全消耗掉,特别是在燃料丰富的地区。由于在意外情况下一旦有更多的新鲜空气可用,未燃烧的氢气可能会重新点燃,因此还有额外的安全隐患。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号