首页> 外文期刊>International journal of hydrogen energy >Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires
【24h】

Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires

机译:In2S3壳厚度对定向ZnO / In2S3核/壳纳米线的电化学和光学性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we address the effect of shell thickness and core/shell structure on the electrochemical and photoelectrochemical cell (PEC) measurements properties of ZnO/ In2S3 core/shell nanowires (NWs). The objective is to elucidate the mechanisms responsible for the extended photoresponse of ZnO/In2S3 core/shell NWs to solar radiation. Well aligned ZnO/In2S3 core/shell NWs were fabricated on indium tin oxide substrates using electrochemically grown ZnO NWs as the cores and electrodeposited In2S3 as the shells. The samples structure was characterized by X-ray diffraction, revealing the mixed wurtzite and tetragonal structures of both ZnO cores and In2S3 shells, and the improvement in the structure with the increases of In2S3 shell thickness. The optical properties were studied through optical absorbance and photoluminescence measurements, showing the optical properties featured with type-II heterogeneous nanostructures constructed from ZnO and In2S3. Electrochemical impedance spectroscopy (EIS) is employed and an equivalent circuit model is designed suggesting that the cell performances were affected by increasing In2S3 shell deposition times. From Mott Schottky plots, several parameters such as flat-band potential and free carrier concentration were determined. Next, from (PEC) measurements, the highest photocurrent density produced by the In2S3 shell electrode prepared at deposition time of 5 min reached 9.30 mA cm(2) at an applied potential of 0.8 V vs. Ag/AgCl. This value was about 6.8 times as much as more than that measured on ZnO NWs one and provided the highest value of solar-to-hydrogen energy efficiency eta (%). These results are very encouraging and suggest that In2S3 covered ZnO NWs nanostructures are valuable photo-anodes in order to build cheap devices for solar energy-to-hydrogen generation devices. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:在本文中,我们讨论了壳厚度和核/壳结构对ZnO / In2S3核/壳纳米线(NWs)的电化学和光电化学电池(PEC)测量性能的影响。目的是阐明负责ZnO / In2S3核/壳NW对太阳辐射的扩展光响应的机制。使用电化学生长的ZnO NW作为核芯并电沉积的In2S3作为壳层,在铟锡氧化物衬底上制备了取向良好的ZnO / In2S3核/壳NW。样品的结构通过X射线衍射表征,揭示了ZnO核和In2S3壳的混合纤锌矿和四方结构,并且随着In2S3壳厚度的增加,结构得到了改善。通过光吸收和光致发光测量研究了光学性质,显示了由ZnO和In2S3构成的II型异质纳米结构所具有的光学性质。采用电化学阻抗谱(EIS),并设计了等效电路模型,表明电池性能受In2S3壳沉积时间增加的影响。从莫特·肖特基(Mott Schottky)图中,可以确定一些参数,例如平带电势和自由载流子浓度。接下来,从(PEC)测量中,在0.8 V相对于Ag / AgCl的施加电势下,在5分钟的沉积时间下制备的In2S3壳电极产生的最高光电流密度达到9.30 mA cm(2)。该值大约是ZnO NWs的6.8倍,是太阳能到氢能效η(%)最高的值。这些结果非常令人鼓舞,并表明In2S3覆盖的ZnO NWs纳米结构是有价值的光阳极,以便为太阳能到氢生成设备制造便宜的设备。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第9期|5694-5707|共14页
  • 作者单位

    Ctr Rech & Technol Energie Technopole Borj Cedria, Lab Nanomat & Syst Energies Renouvelables LANSER, Bp 95, Hammam Lif 2050, Tunisia|Fac Sci Tunis, Campus Univ, Tunis 2092, Tunisia;

    Ctr Rech & Technol Energie Technopole Borj Cedria, Lab Nanomat & Syst Energies Renouvelables LANSER, Bp 95, Hammam Lif 2050, Tunisia;

    Ctr Rech & Technol Energie Technopole Borj Cedria, Lab Nanomat & Syst Energies Renouvelables LANSER, Bp 95, Hammam Lif 2050, Tunisia;

    Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, BP 70239, F-54506 Vandoeuvre Les Nancy, France;

    Univ Lorraine, CNRS UMR 7274, LRGP, 1 Rue Grandville, F-54001 Nancy, France;

    Ctr Rech & Technol Energie Technopole Borj Cedria, Lab Nanomat & Syst Energies Renouvelables LANSER, Bp 95, Hammam Lif 2050, Tunisia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ZnO/In2S3 core/shell; Shell thickness; Electrochemical impedance; Photoelectrochemical;

    机译:ZnO / In2S3核/壳;壳厚;电化学阻抗;光电化学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号