首页> 外文期刊>International journal of hydrogen energy >Calibration of low-pressure MEMS gas sensor for detection of hydrogen gas
【24h】

Calibration of low-pressure MEMS gas sensor for detection of hydrogen gas

机译:用于检测氢气的低压MEMS气体传感器的校准

获取原文
获取原文并翻译 | 示例
       

摘要

Detection of hydrogen by sensors are significant for improvement and safe usage of hydrogen gas as an energy source. In this paper, the application of the MEMS gas sensor for detection of hydrogen gas is numerically studied to develop the application of this device in different industrial applications. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are inclusively discussed. In this study, the pressure of hydrogen is varied from 62 to 1500 pa correspond to Knudsen number from 0.1 to 4.5 to investigate all characteristics of the thermal-driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high precision results. To solve these equations, Direct Simulation Monte Carlo (DSMC) approach is used as a robust method for the non-equilibrium flow field. The effects of length, thickness and temperature of arms are comprehensively investigated in different ambient pressures. In addition, the effect of various hydrogen concentrations on the Knudsen force is studied. Our findings show that maximum Knudsen force occurs at P = 387 pressure and intensifies when the length of the arms is increased from 50 mu m to 150 mu m. In addition, the obtained results demonstrate that the generated force is highly sensitive to hydrogen gas species and this enables device for detection of hydrogen gas. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:通过传感器检测氢气对于改善和安全使用氢气作为能源具有重要意义。本文对MEMS气体传感器在氢气检测中的应用进行了数值研究,以开发该器件在不同工业应用中的应用。全面讨论了以热臂和冷臂为非等温壁的矩形外壳内部的流动特征和力产生机理。在这项研究中,氢的压力在62至1500 pa之间变化,Knudsen数在0.1至4.5之间变化,以研究MEMS传感器内部热驱动力的所有特征。为了模拟微型气体检测器内部的稀有气体,应用了Boltzmann方程以获得高精度结果。为了求解这些方程,直接模拟蒙特卡罗(DSMC)方法被用作非平衡流场的鲁棒方法。在不同的环境压力下全面研究了臂的长度,厚度和温度的影响。另外,研究了各种氢浓度对克努森力的影响。我们的发现表明,最大努氏力出现在P = 387压力下,并且当臂长从50μm增加到150μm时会增大。另外,获得的结果证明所产生的力对氢气种类高度敏感,这使得能够检测氢气的装置。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号