首页> 外文期刊>International journal of hydrogen energy >Designing a miniaturized photoacoustic sensor for detecting hydrogen gas
【24h】

Designing a miniaturized photoacoustic sensor for detecting hydrogen gas

机译:设计小型化光声传感器,用于检测氢气

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, photoacoustic spectroscopy method is used for hydrogen gas detection. In order to improve the performance of the sensor, we have used a miniaturized dumbbell-shaped cell containing two buffer volumes and a resonator. The coupled photoacoustic equations have been solved in gaseous environment using finite-element-method and by corresponding validation. The impacts of various effective parameters such as frequency response, quality factor, acoustic pressure and heat have been analyzed. Frequency analysis in the hydrogen gas medium leads to the first natural frequency of the sensor at 88.563 kHz which has 65 kHz difference with the second natural frequency. By studying the behavior of the resonance frequencies of the proposed system, the optimum location for the sensor positioning of the designed system has been investigated for different gases and the results show that the designed photoacoustic sensor has the fingerprint feature for detecting hydrogen gas. Moreover, the results of the cell filled by hydrogen gas have been compared to those obtained from other gases such as propane, nitrogen and carbon di-oxide. The performance of the system is also evaluated for volatile organic compounds (VOCs) and nitrogen dioxide (NO2). The analysis of the proposed miniature system shows a significant improvement in the quality factor as well as the reduction in system losses. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本文采用光声光谱法用于氢气检测。为了提高传感器的性能,我们使用了包含两个缓冲体积和谐振器的小型化哑铃形电池。使用有限元方法和相应的验证,在气态环境中求解耦合的光声方程。已经分析了各种有效参数的影响,例如频率响应,质量因数,声压和热量。氢气介质中的频率分析导致传感器的第一个固定频率为88.563kHz,其与第二自然频率为65kHz差异。通过研究所提出的系统的谐振频率的行为,已经研究了设计系统的传感器定位的最佳位置,用于不同的气体,结果表明,设计的光声传感器具有用于检测氢气的指纹特征。此外,已经将由氢气填充的细胞的结果与从其他气体(如丙烷,氮和碳二氧化物)获得的那些进行比较。还评估系统的性能,用于挥发性有机化合物(VOC)和二氧化氮(NO 2)。提出的微型系统的分析显示了质量因素的显着改善以及系统损失的降低。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号