首页> 外文期刊>International journal of hydrogen energy >Enhanced power generation, faster transient response and longer durability of HT-PEMFC using composite polybenzimidazole electrolyte membrane with optimum rGO loading
【24h】

Enhanced power generation, faster transient response and longer durability of HT-PEMFC using composite polybenzimidazole electrolyte membrane with optimum rGO loading

机译:使用具有最佳RGO负载的复合聚苯和咪唑电解质膜增强发电,快速瞬态响应和HT-PEMFC耐久性

获取原文
获取原文并翻译 | 示例
           

摘要

Here we report enhanced power generation, faster transient response and longer durability of HT-PEMFC by employing a composite membrane of PBI with reduced graphene oxide (rGO) at an optimum loading of 1%. Easy and low cost synthesis of the composite membranes at different loading of rGO is achieved using methane sulfonic acid (MSA) as solvent that resolves the long-standing issue of poor solubility of PBI in the conventional solvents. Property and performance mapping with respect to rGO loading not only leads to attain the optimum but also identifies the window of feasible operating zone. It is observed that with very low (1%) rGO content, composite PBI membrane (rGO-PBI-1) offers the maximum enhancement of all properties viz water uptake, acid uptake, proton conductivity, ion exchange capacity, acid retention capacity, chemical stability, yield strength, while beyond a threshold/critical loading (similar to 4%) deterioration of electrochemical and mechanical properties occur. Steady state performance analysis reveals almost two times peak power enhancement of HT-PEMFC using rGO-PBI-1 electrolyte membrane at an operating temperature of 170 degrees C; in situ impedance analysis during fuel cell operation reveals sharp decay in charge transfer resistance. Multiple step response analysis confirms (similar to 2 times) faster transient response of fuel cell using rGO-PBI-1 while compared to that with pristine PBI membrane. Fuel cell stability analysis ensures longer durability of operation with negligible decay in voltage. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:在这里,我们通过使用具有较低的石墨烯(RGO)的PBI,以最佳负载为1%,通过使用PBI的复合膜来报告增强的发电,更快的瞬态响应和HT-PEMFC的较长耐久性。使用甲烷磺酸(MSA)作为溶剂来实现不同负载RGO的复合膜的容易和低成本的合成,以解决常规溶剂中PBI溶解度不稳定的长期问题。关于RGO负载的财产和性能映射不仅导致获得最佳,而且还标识了可行的操作区的窗口。观察到,由于非常低(1%)Rgo含量,复合PBI膜(RGO-PBI-1)提供了所有特性的最大增强,即所有性质的viz水吸收,酸摄取,质子电导率,离子交换能力,酸保留容量,化学品稳定性,屈服强度,而超出阈值/临界负载(类似于4%)电化学和机械性能的劣化。稳态性能分析显示使用RGO-PBI-1电解质膜在170摄氏度下使用RGO-PBI-1电解质膜的峰值功率提高的几乎两倍。在燃料电池操作期间的原位阻抗分析显示出电荷转移阻力的急剧衰减。与用原始PBI膜相比,多步骤响应分析确认使用RGO-PBI-1的燃料电池的瞬态响应更快。燃料电池稳定性分析确保操作较长的操作耐用性可忽略的衰减。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号