...
首页> 外文期刊>International journal of hydrogen energy >A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass
【24h】

A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass

机译:藻类生物质热化学转化制氢的比较分析

获取原文
获取原文并翻译 | 示例
           

摘要

Gasification has the potential to convert biomass into gaseous mixtures that can be used for hydrogen production. Thermal gasification and supercritical water gasification are commonly used thermochemical methods for conversion of biomass to hydrogen. Supercritical water gasification handles wet biomass, thus eliminating the capital cost-intensive drying step. Thermal gasification is considered as an alternative means of producing hydrogen from microalgae where biomass has to be dried before gasification. The authors developed techno-economic models for assessment of the production of hydrogen through supercritical gasification and thermal gasification processes. Techno-economic assessment was based on developed process models. Equipment was sized and costs were estimated using the developed process models, and the product value was determined assuming 20 years of plant life. The economic assessment of supercritical water and thermal gasification show that 2000 dry tonnes/day plant requires total capital investments of 277.8 M$ and 215.3 M$ for hydrogen product values of $4.59 +/- 0.10/kg and $5.66 +/- 0.10/kg, respectively. The relatively higher yield obtained in supercritical water gasification compared to thermal gasification results in lower product value of hydrogen for supercritical water gasification, thereby making it more desirable. This cost of hydrogen is about 4 times the cost of hydrogen from natural gas. The sensitivity analysis indicates that biomass cost and yield are the most sensitive parameters in the economics of the supercritical or thermal gasification process; this signifies the importance of algal biomass availability. The techno-economic assessment helps to identify options for the production of hydrogen fuel through these novel technologies. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:气化具有将生物质转化为可用于制氢的气态混合物的潜力。热气化和超临界水气化是将生物质转化为氢的常用热化学方法。超临界水气化处理湿生物质,因此省去了资本成本高的干燥步骤。热气化被认为是从微藻生产氢的另一种方法,其中必须在气化之前将生物质干燥。作者开发了用于评估通过超临界气化和热气化过程制氢的技术经济模型。技术经济评估基于已开发的过程模型。使用开发的过程模型确定设备的大小并估算成本,并假设工厂使用寿命为20年,确定产品价值。对超临界水和热气化的经济评估表明,对于氢气产品价值分别为4.59 +/- 0.10 / kg和5.66 +/- 0.10 / kg,2000吨/天的工厂需要的总资本投资为2.778亿美元和2.153亿美元,分别。与热气化相比,在超临界水气化中获得的相对较高的收率导致用于超临界水气化的氢气的产值较低,因此使其更加理想。氢气的成本约为天然气制氢成本的4倍。敏感性分析表明,生物质成本和产量是超临界或热气化工艺经济性中最敏感的参数。这表明藻类生物质可利用性的重要性。技术经济评估有助于通过这些新技术来确定生产氢燃料的选择。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号