首页> 外文期刊>International journal of hydrogen energy >Two-dimensional ultrathin Zn_xCd_(1-x)S nanosheet with exposed polar facet by using layered double hydroxide template for photocatalytic hydrogen generation
【24h】

Two-dimensional ultrathin Zn_xCd_(1-x)S nanosheet with exposed polar facet by using layered double hydroxide template for photocatalytic hydrogen generation

机译:二维超薄Zn_xCd_(1-x)S纳米片具有暴露的极性面,通过使用分层双氢氧化物模板光催化制氢

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional ultrathin ZnxCd1-xS nanosheet was fabricated by topotactic sulfurization process using trimetallic ZnCdAl layered double hydroxides (LDHs) as precursor and thiourea as sulfur source. A series of characterizations were conducted to investigate the structure and properties of ZnxCd1-xS nanosheet. The band gap engineering of ZnxCd1-xS nanosheet can be tuned by the composition of LDH precursor, keeping balance between photo-absorption ability and flat band potential. ZnxCd1-xS nanosheet possessed exposed (111)ZB or (002)WZ polar facet. Zn0.67Cd0.33S nanosheet displayed not only the highest photocatalytic hydrogen-generation activity under visible light irradiation (6.69 mmol h(-1)g(-1)) without cocatalyst, but also outstanding stability after several cycles. In spite of the poor surface area of the nanosheet, it can be concluded that the carrier separation and transport rate of ZnxCd1-xS nanosheet significantly enhanced, rendering photogenerated carriers transport across the polar facet. This can be attributed to the photogenerated electron/hole exclusively delocalized distributed on the metal/sulfur ions, respectively. This work presents a strategy to fabricate highly efficient ZnxCd1-xS nanosheet from LDH precursor, which is a simple, low-cost and environmentally friendly process. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:采用三金属ZnCdAl层状双氢氧化物(LDHs)为前驱体,硫脲为硫源,通过全位硫化法制备了二维超薄ZnxCd1-xS纳米片。进行了一系列表征,以研究ZnxCd1-xS纳米片的结构和性能。 ZnxCd1-xS纳米片的带隙工程可以通过LDH前体的组成来调节,从而在光吸收能力和平坦带电势之间保持平衡。 ZnxCd1-xS纳米片具有暴露的(111)ZB或(002)WZ极性小面。 Zn0.67Cd0.33S纳米片不仅显示了在没有助催化剂的情况下可见光照射下的最高光催化制氢活性(6.69 mmol h(-1)g(-1)),而且在几个循环后表现出出色的稳定性。尽管纳米片的表面积较差,但可以得出结论,ZnxCd1-xS纳米片的载流子分离和传输速率显着提高,从而使光生载流子跨极性小面传输。这可以归因于分别在金属/硫离子上散布的光生电子/空穴。这项工作提出了一种从LDH前体制备高效ZnxCd1-xS纳米片的策略,这是一种简单,低成本且环保的工艺。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号