首页> 外文期刊>International journal of hydrogen energy >Rapid high density cryogenic pressure vessel filling to 345 bar with a liquid hydrogen pump
【24h】

Rapid high density cryogenic pressure vessel filling to 345 bar with a liquid hydrogen pump

机译:快速高密度低温压力容器用液氢泵填充至345 bar

获取原文
获取原文并翻译 | 示例
       

摘要

Cryogenic pressurized hydrogen (H-2) vessels promise maximum storage density with potential to enabling practical H-2 vehicles with maximum driving autonomy and minimum cost of ownership. This paper contributes to a more complete evaluation of the benefits of cryogenic vessel technology by establishing a methodology for evaluating fill density for any initial vessel thermodynamic state. This is accomplished by analyzing 24 cryogenic pressure vessel fill experiments with a liquid hydrogen (LH2) pump manufactured by Linde and installed at the Lawrence Livermore National Laboratory (Livermore, CA) campus. The LH2 piston pump takes LH2 from the station Dewar at near ambient pressure (3 bar) and very low temperature (24.6 K) and pressurizes it to the vessel pressure in two stages of compression, up to 875 bar, although the rating of the cryogenic vessel used for these experiments limits fill pressure to 345 bar. Experiments spanned initial vessel temperatures from ambient to 22 K, enabling pump testing over a broad range of conditions. Experimental results confirm many of the virtues that make LH2 pumping a promising technology for H-2 dispensing, both for filling cryogenic as well as ambient temperature vessels: high throughput (1.67 kg/min, 100 kg/h), unlimited capacity for back to back refueling, low electricity consumption at the station due to high density of LH2 minimizing compression work, and highest fill density, up to 80 g/L (estimated) when dispensing cryogenic hydrogen at 700 + bar. Analysis of the experiments shows that fill density can be predicted with reasonable accuracy ( 0.7 g/L) by assuming 10 kJ/kg K cryogenic vessel inlet entropy (pump delivery hose outlet entropy). Fill lines are finally generated on a H-2 phase diagram, producing charts that can be used for rapidly determining fill density for any vessel condition at the moment of fill initiation. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:低温加压氢气(H-2)容器保证了最大的存储密度,并有可能使实用的H-2车辆具有最大的驾驶自主权和最低的拥有成本。本文通过建立一种用于评估任何初始容器热力学状态的填充密度的方法,有助于更全面地评估低温容器技术的优势。这是通过使用由Linde制造并安装在Lawrence Livermore国家实验室(加利福尼亚州Livemore)的液态氢(LH2)泵分析24个低温压力容器填充实验来完成的。 LH2活塞泵在接近环境压力(3 bar)和非常低的温度(24.6 K)的情况下从杜瓦瓶中提取LH2,并在两个压缩阶段将其加压至容器压力,最高可达875 bar,尽管低温等级用于这些实验的容器将填充压力限制为345 bar。实验将初始容器温度从环境温度扩展到22 K,从而能够在广泛的条件下进行泵测试。实验结果证实了许多优点,使LH2泵成为用于H-2分配的有前途的技术,既可填充低温容器也可填充环境温度容器:高通量(1.67 kg / min,100 kg / h),无限制返回倒加油,LH2的高密度使压缩工作最小化,车站的电力消耗低以及最高填充密度(在700 + bar的情况下分配低温氢时最高可达80 g / L(估计))。实验分析表明,通过假设10 kJ / kg K低温容器入口熵(泵输送软管出口熵)可以合理地预测填充密度(0.7 g / L)。最终,在H-2相图上生成填充线,生成可用于在填充开始时快速确定任何容器条件下填充密度的图表。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号