首页> 外文期刊>International journal of hydrogen energy >Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming
【24h】

Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming

机译:从生物油中制氢:吸附增强型化学回路蒸汽重整的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

The steam reforming of pyrolysis bio-oil is one proposed route to low carbon hydrogen production, which may be enhanced by combination with advanced steam reforming techniques. The advanced reforming of bio-oil is investigated via a thermodynamic analysis based on the minimisation of Gibbs Energy. Conventional steam reforming (C-SR) is assessed alongside sorption-enhanced steam reforming (SE-SR), chemical looping steam reforming (CLSR) and sorption-enhanced chemical looping steam reforming (SE-CLSR). The selected CO2 sorbent is CaO(s) and oxygen transfer material (OTM) is Ni/NiO. PEFB bio-oil is modelled as a surrogate mixture and two common model compounds, acetic acid and furfural, are also considered. A process comparison highlights the advantages of sorption-enhancement and chemical looping, including improved purity and yield, and reductions in carbon deposition and process net energy balance.The operating regime of SE-CLSR is evaluated in order to assess the impact of S/C ratio, NiO/C ratio, CaO/C ratio and temperature. Autothermal operation can be achieved for S/C ratios between 1 and 3. In autothermal operation at 30 bar, S/C ratio of 2 gives a yield of 11.8 wt%, and hydrogen purity of 96.9 mol%. Alternatively, if autothermal operation is not a priority, the yield can be improved by reducing the quantity of OTM. The thermodynamic analysis highlights the role of advanced reforming techniques in enhancing the potential of bio-oil as a source of hydrogen. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:热解生物油的蒸汽重整是实现低碳氢生产的一种建议途径,可以通过与先进的蒸汽重整技术相结合来提高。通过基于吉布斯能量最小化的热力学分析研究了生物油的高级重整。常规蒸汽重整(C-SR)与吸附增强蒸汽重整(SE-SR),化学回路蒸汽重整(CLSR)和吸附增强化学回路蒸汽重整(SE-CLSR)一起进行评估。所选的CO2吸附剂为CaO,而氧气传输材料(OTM)为Ni / NiO。 PEFB生物油被模拟为替代混合物,并且还考虑了两种常见的模型化合物乙酸和糠醛。过程比较突出了吸附增强和化学循环的优势,包括提高了纯度和产量,并减少了碳沉积和过程净能量平衡。对SE-CLSR的运行方式进行了评估,以评估S / C的影响。比率,NiO / C比率,CaO / C比率和温度。当S / C比率在1-3之间时,可以实现自热运行。在30 bar的自热运行中,S / C比率为2时,产率为11.8 wt%,氢纯度为96.9 mol%。或者,如果自动热操作不是优先事项,则可以通过减少OTM的数量来提高产量。热力学分析强调了先进的重整技术在增强生物油作为氢源潜力方面的作用。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号