首页> 外文期刊>International Journal of Heat and Mass Transfer >Droplet vaporization model in the presence of thermal radiation
【24h】

Droplet vaporization model in the presence of thermal radiation

机译:存在热辐射的液滴蒸发模型

获取原文
获取原文并翻译 | 示例
           

摘要

The 'extended' and 'effective-conductivity' models of droplet vaporization developed by Abramzon and Sirig-nano are generalized to take into account the contribution of thermal radiation and the temperature dependence of liquid fuel properties. In the first model, the convection of liquid is explicitly taken into account, while in the second model the effect of liquid convection on the droplet surface temperature is accounted for by replacing the actual thermal conductivity of liquid by the so called 'effective thermal conductivity'. In both models the contribution of thermal radiation is taken into account based on the simplified model for thermal radiation absorption suggested by Dombrovsky and Sazhin. This model is based on the geometric optics and the MDP_0 approximations, and allows a rather simple description of temperature distribution inside the droplet. Physical properties of diesel fuel are approximated by those for n-dodecane. It is pointed out that the radiation absorption in diesel fuel is generally stronger than in n-decane, and it needs to be taken into account in modeling the combustion processes in diesel engines. Weak effect of thermal radiation in n-decane droplets, however, may be related to the fact that due to lack of experimental data, absorption coefficient was assumed to be zero at λ < 2.6 μm. When data were available, the absorption of radiation of n-decane was generally less than that of diesel fuel especially in the regions of semi-transparency (λ not close to 3.4 μm). Comparison between the calculations performed using the 'extended vaporization' model and distributed radiation absorption heat source and those based on the 'effective-conductivity' model with the uniform distribution of the internal heat source show exceptionally good agreement between the results. This allows us to recommend using the 'effective-conductivity' model with uniform radiation absorption for spray combustion calculations, including the applications in diesel engines.
机译:由Abramzon和Sirig-nano开发的液滴汽化的“扩展”和“有效电导率”模型被综合考虑了热辐射的贡献和液体燃料特性的温度依赖性。在第一个模型中,明确考虑了液体的对流,而在第二个模型中,通过用所谓的“有效热导率”代替了液体的实际热导率,解决了液体对流对液滴表面温度的影响。 。在两个模型中,都基于Dombrovsky和Sazhin建议的简化的热辐射吸收模型来考虑热辐射的贡献。该模型基于几何光学和MDP_0近似值,并且可以对液滴内部的温度分布进行相当简单的描述。柴油的物理性质与正十二烷的物理性质近似。要指出的是,柴油中的辐射吸收通常比正癸烷中的吸收强,在对柴油机的燃烧过程进行建模时需要将其考虑在内。然而,正癸烷液滴中的热辐射效应较弱,可能与以下事实有关:由于缺乏实验数据,在λ<2.6μm时吸收系数被假定为零。当有数据时,正癸烷的辐射吸收率通常小于柴油燃料的吸收率,特别是在半透明区域(λ不接近3.4μm)。使用“扩展汽化”模型和分布式辐射吸收热源进行的计算与基于“有效电导率”模型且内部热源分布均匀的计算之间的比较表明,结果之间具有非常好的一致性。这使我们可以推荐使用具有均匀辐射吸收的“有效电导率”模型进行喷雾燃烧计算,包括柴油发动机中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号