首页> 外文期刊>International Journal of Heat and Mass Transfer >Transient flow and heat transfer leading to periodic state in a cavity with inlet and outlet ports due to incoming flow oscillation
【24h】

Transient flow and heat transfer leading to periodic state in a cavity with inlet and outlet ports due to incoming flow oscillation

机译:瞬态流动和传热由于进入的流动振荡而在带有入口和出口的空腔中导致周期性状态

获取原文
获取原文并翻译 | 示例
           

摘要

A finite-volume-based computational study of transient laminar flow and heat transfer (neglecting natural convection) leading to periodic state within a square cavity with inlet and outlet ports due to an oscillating velocity at the inlet port is presented. The inlet port is placed at the top of the left wall and the outlet port is positioned at the bottom of the right wall of the cavity. The inlet velocity varies sinusoidally with time for a range of dimensionless frequencies (St = 0.1, 0.5, 1, 2 and 10). The instantaneous Reynolds number also varies sinusoidally between 100 and 500 and Pr = 5. It takes more cycles for the temperature field to reach its periodic state in comparison to the corresponding flow field. For cases with higher Strouhal numbers, it takes more cycles to reach a periodic state. The through-flow stream undergoes cyclic growth and decay. The throughflow is in constant contact with the clockwise rotating primary vortex, which in turn interacts with two rotating vortices on the left wall. A counterclockwise rotating vortex at the top right corner also experiences periodic growth and decay. Minimal heat transfer is consistently observed on the left wall. In contrast, certain segments of the other three walls and the boundary of the throughflow are zones of active heat exchange. For St = 0.1, the mean Nusselt numbers on the four walls clearly exhibit large amplitudes of oscillation and periodicity. With St = 10, the amplitudes of oscillation on various walls are generally degraded. These behaviors are directly linked to the relation between the period of oscillation and the convection time scale. Regardless of the Strouhal number, heat transfer enhancement in comparison to the steady state case is consistently observed. The best heat transfer rate is realized when the Strouhal number is close to unity. This is the case when the period of the incoming stream resonates with the convection time scale.
机译:提出了基于有限体积的瞬态层流和传热(忽略自然对流)的计算研究,该瞬态层流和传热(忽略自然对流)由于入口处的振荡速度而导致具有入口和出口的方腔内产生周期性状态。入口放置在腔体左壁的顶部,出口放置在腔体右壁的底部。在无因次频率范围内(St = 0.1、0.5、1、2和10),入口速度随时间呈正弦变化。瞬时雷诺数也在100到500之间正弦变化,并且Pr =5。与相应的流场相比,温度场达到其周期性状态需要更多的周期。对于具有较高Strouhal数的情况,需要更多的周期才能达到周期性状态。通流流经历周期性的生长和衰减。通流始终与顺时针旋转的主旋涡接触,后者又与左壁上的两个旋转的旋涡相互作用。右上角的逆时针旋转涡旋也经历周期性的生长和衰减。在左壁上始终观察到最小的热传递。相反,其他三个壁的某些部分和通流的边界是活跃的热交换区域。对于St = 0.1,四个壁上的平均Nusselt数显然显示出较大的振荡幅度和周期性。当St = 10时,通常会降低各个壁上的振荡幅度。这些行为直接与振荡周期和对流时间尺度之间的关系有关。不管斯特劳哈尔数如何,始终观察到与稳态情况相比传热增强。当斯特劳哈尔数接近于1时,可以实现最佳的传热率。当输入流的周期与对流时间刻度发生共振时,就是这种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号