...
首页> 外文期刊>International Journal of Heat and Mass Transfer >A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6A14V alloy
【24h】

A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6A14V alloy

机译:对Ti6A14V合金激光基粉末床熔合过程中工艺参数对热,流体流动和冶金条件的影响的系统研究

获取原文
获取原文并翻译 | 示例
           

摘要

Additive manufacturing (AM) of metals faces a growing number of applications in different industries e.g. aerospace, medical, automotive, etc. Although metal AM outweighs current conventional production methods in some certain areas, the exact effect of processing conditions on the final quality and microstructure of the parts is still not well understood. An efficient way of understanding the effect of these processing conditions on a part's quality is via a calibrated and validated numerical model. Hence, in the current work a finite element model for analyzing the heat and fluid flow along with metallurgical conditions during Laser-based Powder Bed Fusion (L-PBF) of a titanium alloy has been developed and implemented in the commercial software code COMSOL Multiphysics. The thermal effect of the laser is modelled via a novel conico-Gaussian moving heat source, based on the concept of modified optical penetration depth. Analytical expressions for the geometrical distribution of the heat source are derived to obtain the heat source's effective depth. The model has been both verified and validated through mesh sensitivity analysis and comparison with experimental results. Furthermore, a detailed description about the role of the various driving forces for fluid flow has been given based on a thorough analysis using relevant dimensionless numbers. A systematic procedure to study the influence of neglecting the fluid flow inside the melt pool on the thermal field has also been devised. Moreover, a parametric study has been carried out to understand the effect of varying beam size and laser travel speed on heat and fluid flow conditions along with the final microstructures. The results show that changing the beam size or travel speed highly influences the grain sizes, dendritic growth directions and also the grain morphologies. To study the metallurgical conditions of the process, a microstructural sub-model has been developed. It is shown that by choosing different process parameters, one can manipulate the direction of the dendritic growth and change the grain sizes. Specifically, it is found that the overall effect of changing beam size on grain morphology is less pronounced than changing the travelling speed. (C) 2019 Elsevier Ltd. All rights reserved.
机译:金属的增材制造(AM)面临着不同行业中越来越多的应用,例如航空航天,医疗,汽车等。尽管在某些领域,金属增材制造胜过当前的常规生产方法,但加工条件对零件的最终质量和微观结构的确切影响仍未得到很好的理解。了解这些加工条件对零件质量的影响的有效方法是通过经过校准和验证的数值模型。因此,在当前工作中,已经开发出了有限元模型,用于分析钛合金基于激光的粉末床熔合(L-PBF)期间的热量和流体流动以及冶金条件,并在商业软件代码COMSOL Multiphysics中实现了该模型。激光的热效应是基于改进的光学穿透深度的概念,通过新型的锥高斯移动热源建模的。推导了热源的几何分布的解析表达式,以获得热源的有效深度。该模型已经通过网格灵敏度分析以及与实验结果的比较得到了验证和验证。此外,基于使用相关的无量纲数的详尽分析,已经给出了关于各种驱动力对流体流动的作用的详细描述。还设计了系统的程序来研究忽略熔池内部流体流动对热场的影响。此外,已经进行了参数研究,以了解变化的光束大小和激光传播速度对热和流体流动条件以及最终微结构的影响。结果表明,改变光束尺寸或行进速度会极大地影响晶粒尺寸,树枝状生长方向以及晶粒形态。为了研究该工艺的冶金条件,已经开发了微观结构子模型。结果表明,通过选择不同的工艺参数,可以控制枝晶生长的方向并改变晶粒尺寸。具体而言,发现改变光束尺寸对晶粒形态的总体影响不如改变行进速度明显。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号