首页> 外文期刊>International Journal of Heat and Mass Transfer >A dynamic detached-eddy simulation model for turbulent heat transfer: Impinging jet
【24h】

A dynamic detached-eddy simulation model for turbulent heat transfer: Impinging jet

机译:湍流传热的动态分离涡模拟模型:射流

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the simulation of wall heat transfer in impinging jets is comprehensively investigated. A new turbulent thermal diffusivity formulation conjugated with a dynamic delayed detached-eddy simulation (DDES) model is proposed, based on a strict assessment and a detailed analysis of the near-wall performance of constant-coefficient DDES/IDDES and LES models. The simulations are conducted at a nozzle-to-wall distance of H/D = 2 and 4 with a Reynolds number of Re = 40,000. The measurement data obtained by temperature-sensitive paint (TSP) and particle image velocimetry (PIV) are used for validation. Impinging jets at Re = 23,000 and 70,000, in accordance with the literature, are used for further validation. The definition of the shielding function in a previous version is modified by using an alternative formulation, which is averaged only in a thin layer near the wall and is not sensitive to the computational domain size. A alpha(t) model is proposed for impingement heat transfer, using a constant Pr-t model in the impingement region and a shear rate-based alpha(t) formulation in the wall-jet region. The dynamic DDES model conjugated with the new alpha(t) model accurately predicts the wall Nusselt number distributions in each impinging jet. The LES and dynamic DDES conjugated with the existing Pr-t model underestimate the heat transfer coefficient in the wall-jet region, due to the insufficient eddy resolving capacity that cannot compensate for the turbulent eddy viscosity attenuation in the heat transfer model. The constant-coefficient DDES and improved DDES (IDDES) produce excessive turbulent eddy viscosity in the flow, leading to the high model-dependence of the results. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项研究中,对射流壁传热的模拟进行了全面研究。在对恒定系数DDES / IDDES和LES模型的近壁性能进行严格评估和详细分析的基础上,提出了一种与动态延迟分离涡模拟(DDES)模型相结合的新湍流热扩散公式。以H / D = 2和4的喷嘴到壁的距离进行雷诺数为Re = 40,000的模拟。通过热敏涂料(TSP)和颗粒图像测速仪(PIV)获得的测量数据用于验证。根据文献,Re = 23,000和70,000的撞击射流用于进一步验证。以前版本中屏蔽功能的定义通过使用替代公式进行了修改,该公式仅在壁附近的薄层中取平均值,并且对计算域大小不敏感。提出了一种用于碰撞传热的alpha(t)模型,该方法在碰撞区域使用了恒定的Pr-t模型,并在壁喷射区域使用了基于剪切速率的alpha(t)公式。动态DDES模型与新的alpha(t)模型共轭,可准确预测每个撞击射流中壁Nusselt的分布。与现有的Pr-t模型相结合的LES和动态DDES低估了壁面射流区域的传热系数,这是因为涡旋分辨能力不足,无法补偿传热模型中湍流涡流的衰减。恒定系数DDES和改进的DDES(IDDES)在流动中产生过大的湍流涡流粘度,从而导致结果与模型的高度相关性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号