首页> 外文期刊>International Journal of Fatigue >Fatigue extrusions, slip band cracking and a novel hybrid concept for fatigue crack closure close to the crack tip
【24h】

Fatigue extrusions, slip band cracking and a novel hybrid concept for fatigue crack closure close to the crack tip

机译:疲劳挤压,滑移带裂纹和新颖的混合概念,用于在靠近裂纹尖端处闭合疲劳裂纹

获取原文
获取原文并翻译 | 示例
           

摘要

Small fatigue cracks in the aluminium alloys 2024-T351 and 8090-T8771 have been observed to grow by a heterogeneous process of three-dimensional slip band decohesion. Local, finely-divided crack path excursions at slip bands, the pull-out of small sections of decohered slip band and the formation of fatigue extrusions at slip bands produced micro-roughness on the crack surfaces. The hybrid form of plastic deformation induced surface roughness provides a potential source of crack closure. This may be effective in reducing the nominal crack growth driving force at small cracks and near threshold for long cracks when the crack tip opening displacement is small. A higher magnitude of closure at small mode I crack sizes and a spread in the levels of closure for a given crack size are consistent with the dependence of the slip band related micro-roughness on the individual crack path. Fatigue extrusions imply a dynamic form of crack closure that could develop immediately at the crack tip even for fatigue at high mean load. Complex influences of crack size, grain orientation and crack path on crack closure and crack growth rate indicate that a stochastic approach to determining fatigue life is appropriate for the critical small crack regime in these and similarly behaving materials.
机译:已经观察到铝合金2024-T351和8090-T8771中的小疲劳裂纹会通过三维滑移带脱粘的异质过程而增长。滑带处局部,细分的裂纹路径偏移,去粘滑带的小部分的拉出以及滑带处疲劳挤压的形成在裂纹表面产生了微观粗糙度。塑性变形引起的表面粗糙度的混合形式提供了裂纹闭合的潜在来源。当裂纹尖端的开口位移较小时,这可能会有效地减小小裂纹处和长裂纹阈值附近的名义裂纹扩展驱动力。在较小的I型裂纹尺寸下,较高的闭合强度以及给定裂纹尺寸下的闭合水平分布与滑移带相关的微观粗糙度对单个裂纹路径的依赖性相一致。疲劳挤压意味着动态形式的裂纹闭合,即使在高平均载荷下疲劳也可能在裂纹尖端立即形成。裂纹尺寸,晶粒取向和裂纹路径对裂纹闭合和裂纹扩展速率的复杂影响表明,确定疲劳寿命的随机方法适用于这些和行为相似的材料中的关键小裂纹状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号