...
首页> 外文期刊>International journal of energetic materials and chemical propulsion >REACTIVE FORCE FIELDS: CONCEPTS OF REAXFF AND APPLICATIONS TO HIGH-ENERGY MATERIALS
【24h】

REACTIVE FORCE FIELDS: CONCEPTS OF REAXFF AND APPLICATIONS TO HIGH-ENERGY MATERIALS

机译:活性力场:REAXFF的概念及其在高能材料中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

While quantum-mechanical (QM) methods allow far highly accurate atomistic-scale simulations, their high computational expense limits applications to fairly small systems (generally smaller than 100 atoms) and mostly to statical, rather than dynamical, approaches. Force field (FF) methods are magnitudes faster than QM methods, and as such can be applied to perform nanosecond-dynamics simulations on large (>>1000 atoms) systems. However, these FF methods can usually only describe a material close to its equilibrium state and as such cannot properly simulate bond dissociation and formation. This article describes how the traditional, nonreactive FF concept can be extended in reactive force fields for applications including reactive events by introducing bond order/bond distance concepts. It will discuss how the transferability of the reactive FF can be improved by combining covalent, metallic, and ionic elements. All these concepts will be described by following their implementation in a particular branch of reactive force fields, the ReaxFF reactive force fields, which has found applications to a wide range of materials. Furthermore, we will highlight a series of recent and ongoing applications of ReaxFF force fields to energetic materials, including applications to nitramines, binders, and metallic high-energy materials.
机译:尽管量子力学(QM)方法可以进行非常精确的原子级仿真,但其高昂的计算费用将其应用限制在相当小的系统(通常小于100个原子)上,并且主要应用于静态而非动态方法。力场(FF)方法比QM方法快几个数量级,因此可以应用于大型( 1000原子)系统的纳秒动力学仿真。但是,这些FF方法通常只能描述接近其平衡状态的材料,因此不能正确地模拟键的解离和形成。本文介绍如何通过引入键序/键距概念在反应力领域中扩展传统的非反应性FF概念,以用于包括反应性事件在内的应用。将讨论如何通过结合共价,金属和离子元素来改善反应性FF的转移性​​。所有这些概念将通过在反作用力场的一个特定分支ReaxFF反作用力场中的实现来描述,这些发现已应用于多种材料。此外,我们将重点介绍ReaxFF力场在高能材料领域的一系列最新和正在进行的应用,包括对硝胺,粘合剂和金属高能材料的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号