...
首页> 外文期刊>International Journal of Electrical Power & Energy Systems >Coordinated control of wind farm and VSC-HVDC system using capacitor energy and kinetic energy to improve inertia level of power systems
【24h】

Coordinated control of wind farm and VSC-HVDC system using capacitor energy and kinetic energy to improve inertia level of power systems

机译:利用电容器能量和动能对风电场和VSC-HVDC系统进行协调控制,以提高电力系统的惯性水平

获取原文
获取原文并翻译 | 示例
           

摘要

For large-scale offshore wind power integration to main grids over a long distance, the VSC-HVDC transmission is a typical way. However, the asynchronous characteristic of HVDC link leads to the frequency decouple of the offshore grid and the main grid, i.e., the offshore grid has little or no inertia support for the main grid. The high level penetration of wind energy makes the main grid an "inertia-less" system and impairs the overall stability of the system. This paper proposes a new coordinated control strategy which uses the electrical energy stored in the DC capacitors and the kinetic energy stored in wind turbine rotors to emulate the inertia of synchronous generators. By this control strategy, the DC link capacitors release or absorb energy following the droop DC voltage control of the grid side VSC (CSVSC), and the wind farm VSC (WFVSC) changes its output frequency according to the DC voltage. Thus, an artificial coupling of the frequencies of the two-side AC systems is obtained without remote communication. According to the WFVSC's output frequency, the wind turbine power controller alters its power reference, and the wind turbine speed changes. Thus, the kinetic energy stored in wind turbine rotors is absorbed or released. As a result, the wind turbine is utilized to keep the main grid frequency stable. Based on the doubly fed induction generator (DFIG) wind turbine, this paper analyzes the influence of different additional power controllers and different control parameters of the proposed control strategy on the inertia time constant. Within the permissible range of the DC voltage variation, the proposed control strategy can provide a wide range of inertia time constant, which improves the overall stability of the main grid system. Simulation results of three operation conditions, i.e., sudden load changes, variation of the wind speed, and AC system faults, validated the effectiveness of the proposed coordinated control strategy.
机译:对于远距离大规模海上风电与主电网的整合,VSC-HVDC传输是一种典型的方式。然而,HVDC链路的异步特性导致海上电网和主电网的频率解耦,即,海上电网对主电网几乎没有或没有惯性支撑。风能的高水平渗透使主电网成为“无惯性”系统,并损害了系统的整体稳定性。本文提出了一种新的协调控制策略,该策略利用直流电容器中存储的电能和风力发电机转子中存储的动能来模拟同步发电机的惯性。通过这种控制策略,在电网侧VSC(CSVSC)的下垂DC电压控制之后,DC链路电容器释放或吸收能量,并且风电场VSC(WFVSC)根据DC电压改变其输出频率。因此,无需远程通信就可以实现双向交流系统频率的人为耦合。根据WFVSC的输出频率,风力发电机功率控制器更改其功率参考,并且风力发电机转速发生变化。因此,存储在风力涡轮机转子中的动能被吸收或释放。结果,利用风力涡轮机来保持主电网频率稳定。基于双馈感应发电机(DFIG)风力涡轮机,本文分析了所提出的控制策略的不同附加功率控制器和不同控制参数对惯性时间常数的影响。在直流电压变化的允许范围内,所提出的控制策略可以提供较宽的惯性时间常数范围,从而提高了主电网系统的整体稳定性。三种工作条件的仿真结果,即负载突然变化,风速变化和交流系统故障,验证了所提出的协调控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号