...
首页> 外文期刊>International Journal of Electrical Power & Energy Systems >Theoretical convergence guarantees versus numerical convergence behavior of the holomorphically embedded power flow method
【24h】

Theoretical convergence guarantees versus numerical convergence behavior of the holomorphically embedded power flow method

机译:全同嵌入潮流法的理论收敛保证与数值收敛行为

获取原文
获取原文并翻译 | 示例
           

摘要

The holomorphic embedding load flow method (HELM) is an application for solving the power-flow problem based on a novel method developed by Dr. Trias. The advantage of the method is that it comes with a theoretical guarantee of convergence to the high-voltage (operable) solution, if it exists, provided the equations are suitably framed. While theoretical convergence is guaranteed by Stahl's theorem, numerical convergence is not; it depends on the analytic continuation algorithm chosen. Since the holomorphic embedding method (HEM) has begun to find a broader range of applications (it has been applied to non-linear structure-preserving network reduction, weak node identification and saddle-node bifurcation point determination), examining which algorithms provide the best numerical convergence properties, which do not, why some work and not others, and what can be done to improve these methods, has become important. The numerical Achilles heel of HEM is the calculation of the Fade approximant, which is needed to provide both the theoretical convergence guarantee and accelerated numerical convergence. In the past, only two ways of obtaining Fade approximants applied to the power series resulting from power-system-type problems have been discussed in detail: the matrix method and the Viskovatov method. This paper explores several methods of accelerating the convergence of these power series and/or providing analytic continuation and distinguishes between those that are backed by the theoretical convergence guarantee of Stahl's theorem (i.e., those computing Pade approximants), and those that are not. For methods that are consistent with Stahl's theoretical convergence guarantee, we identify which methods are computationally less expensive, which have better numerical performance and what remedies exist when these methods fail to converge numerically. (C) 2017 Elsevier Ltd. All rights reserved.
机译:全态嵌入潮流算法(HELM)是基于Trias博士开发的一种新颖方法来解决潮流问题的应用程序。该方法的优点是,如果存在适当的方程式,则该方法在理论上保证可以收敛到高压(可操作)解决方案。尽管Stahl定理保证了理论收敛,但数值收敛却没有。它取决于选择的解析连续算法。自从全同嵌入方法(HEM)开始发现更广泛的应用(已应用于非线性保留结构的网络约简,弱节点识别和鞍形节点分叉点确定)以来,研究哪种算法提供了最好的方法数值收敛特性(不起作用),为什么要做一些而不是其他工作以及可以采取哪些措施来改进这些方法,已变得很重要。 HEM的数值致命弱点是Fade近似值的计算,这既需要提供理论上的收敛保证,又需要提供加速的数值收敛。过去,仅详细讨论了两种获取由电力系统类型问题产生的幂级数的Fade近似值的方法:矩阵方法和Viskovatov方法。本文探讨了加速这些幂级数收敛和/或提供解析连续性的几种方法,并区分了那些由Stahl定理的理论收敛性保证支持的方法(即那些计算Pade近似值的方法)和那些没有的方法。对于与Stahl的理论收敛保证相符的方法,我们确定哪些方法在计算上更便宜,哪些方法具有更好的数值性能,以及在这些方法无法进行数值收敛时存在哪些补救措施。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号