首页> 外文期刊>International journal of applied ceramic technology >The Effect of Phase Composition on the Mechanical Properties of LTCC Material
【24h】

The Effect of Phase Composition on the Mechanical Properties of LTCC Material

机译:相组成对LTCC材料力学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

For the fabrication of complex, micro-electromechanical systems (MEMS) devices based on low-temperature co-fired ceramic (LTCC), higher firing temperatures and longer times than those proposed by the LTGC producer are needed. These changes to the thermal budget may influence the material properties and consequently its functional properties. The effect of the firing conditions on the LTCC DuPont 951 and thus on the phase composition, that is, the alumina/anorthite ratio and porosity, on the mechanical properries is presented. The samples fired at low temperatures (800℃) had a high porosity (7%), which significantly contributed to the low elastic modulus (100 GPa) and the low mechanical strength of the LTCC (140 MPa). The samples fired at 850℃, which had only 1% of porosity, resulted in an elastic modulus of 122 GPa and a flexural strength of 224 MPa. A further increase in the temperature contributed to a slight decrease in the elastic modulus, while no significant difference in the flexural strength could be observed. The enhancement of the flexural strength with an increasing firing temperature was mainly related to a decrease in the porosity and to a lesser extent to the different ratio of the alumina/anorthite phases. The effect of firing time on the phase composition at selected temperatures (i.e., 100 h.at 700 and 800℃) is also discussed.
机译:为了制造基于低温共烧陶瓷(LTCC)的复杂的微机电系统(MEMS)器件,需要比LTGC生产商建议的更高的烧成温度和更长的烧成时间。热预算的这些变化可能会影响材料特性,进而影响其功能特性。提出了烧成条件对LTCC杜邦951的影响,并因此对相组成(即氧化铝/钙长石比和孔隙率)对机械性能的影响。在低温(800℃)下燃烧的样品具有较高的孔隙率(7%),这明显导致了LTCC的低弹性模量(100 GPa)和低机械强度(140 MPa)。在孔隙度仅为1%的850℃下燃烧的样品的弹性模量为122 GPa,弯曲强度为224 MPa。温度的进一步升高导致弹性模量略有下降,而抗弯强度没有发现显着差异。随着焙烧温度的提高,弯曲强度的提高主要与孔隙率的降低有关,而在较小程度上与氧化铝/钙长石相的不同比例有关。还讨论了焙烧时间对所选温度下(即700和800℃下100 h)的相组成的影响。

著录项

  • 来源
  • 作者单位

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Jozef Stefan Institute, Jamova cesta 39, SI-WOO Ljubljana, Slovenia CoE NAMASTE, Jamova cesta 39, SI-100 Ljubljana, Slovenia International postgraduate school "Johef Stefan, "Jamova cesta 39, SI-1000 Ljubljana. Slovenia;

    Institut fuer Struktur- und Funktionskeramik (ISFK), Montanuniversitaet Leoben, Peter Tunner Strasse 5, A-8700 Leoben, Austria;

    Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号