...
首页> 外文期刊>International communications in heat and mass transfer >Does nanoparticles dispersed in a phase change material improve melting characteristics?
【24h】

Does nanoparticles dispersed in a phase change material improve melting characteristics?

机译:分散在相变材料中的纳米颗粒会改善熔融特性吗?

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoparticles dispersed in a phase change material alter the thermo-physical properties of the base material, such as thermal conductivity, viscosity, and specific heat capacity. These properties combined with the configuration of the cavity, and the location of the heat source, influence the melting characteristics of the phase change material. In this paper, an assessment of the influence of the nanoparticles in the base material subjected to a heat generating source located in the center of an insulated square cavity, which is a common configuration in thermal capacitors for temporal heat storage is investigated. The interplay between heat conduction enhanced due to an increase in thermal conduction and buoyancy driven heat convection damped by the increase in viscosity of nanoparticles dispersed in the phase change materials is studied with the calculated streamlines and isotherms. We observed three regimes during the melting process, first at an early time duration dominated by heat conduction, later by buoyancy driven convection till the melting front levels with the center of the cavity, and lastly once again heat conduction in the bottom portion of the cavity. During the first two regimes, addition of nanoparticles have no significant performance gain on the heat storage cavity, quantified by maximum temperature of the heat source and average Nusselt number at the faces of the heat source. In the late regime, nanoparticles provide a slight performance gain and this is attributed to the increase in the specific heat of the melt due to the nanoparticles.
机译:分散在相变材料中的纳米颗粒会改变基础材料的热物理性质,例如导热率,粘度和比热容。这些特性与型腔的构造以及热源的位置相结合,会影响相变材料的熔化特性。在本文中,研究了纳米颗粒在受热源位于绝缘方腔中心的基础材料中的影响,该热源位于临时蓄热用热电容器中,是常见的结构。利用计算得到的流线和等温线研究了由于导热增加而增强的导热与由分散在相变材料中的纳米粒子的粘度增加所抑制的浮力驱动的热对流之间的相互作用。我们在熔化过程中观察到三种状态,首先是在早期以热传导为主,然后是由浮力驱动的对流,直到熔化前沿与型腔中心齐平,最后再次在型腔底部进行热传导。 。在前两个过程中,添加纳米颗粒在储热腔上没有明显的性能提升,通过热源的最高温度和热源表面的平均Nusselt数量来量化。在后期阶段,纳米颗粒提供了轻微的性能提升,这归因于由于纳米颗粒而导致的熔体比热的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号