...
首页> 外文期刊>International Communications in Heat and Mass Transfer >Quantitative evaluation of effects of coupled temperature elevation, thermal damage, and enlarged porosity on nanoparticle migration in tumors during magnetic nanoparticle hyperthermia
【24h】

Quantitative evaluation of effects of coupled temperature elevation, thermal damage, and enlarged porosity on nanoparticle migration in tumors during magnetic nanoparticle hyperthermia

机译:磁性纳米粒子热疗期间肿瘤瘤中纳米粒子迁移的耦合温度升高,热损伤和扩大孔隙率的定量评价

获取原文
获取原文并翻译 | 示例
           

摘要

Using simulation to accurately design a heating protocol in magnetic nanoparticle hyperthermia relies on not only the initial nanoparticle distribution, but also the dynamic particle migration during heating. A coupled theoretical framework consisting of nanoparticle migration in a porous medium model and temperature elevation in a heat transfer model was developed to evaluate possible nanoparticle redistribution during local heating. Five generated tumor models from microcomputed tomography (microCT) with nanoparticle deposition were used to predict temperature elevations and assess local thermal damage when each tumor was subject to an alternating magnetic field. Local thermal damage further changed the interstitial structure in the tumor, resulting in enhancements in porosity and diffusion coefficient to promote nanoparticle diffusion to low concentration regions. The distribution volumes of nanoparticles in the highest concentration range reduced after heating, while those in the lower concentration ranges increased. After heating, the total nanoparticle distribution volume defined as the tumor volume occupied by nanoparticles was 21% bigger than that before the heating. The theoretical predictions of nanoparticle migration trend agree well with experimental results of microCT scan analyses. It is concluded that thermal damage induced enhancement in nanoparticle diffusion may be one of the mechanisms to explain nanoparticle migration during magnetic nanoparticle hyperthermia. Results from this study may suggest a feasibility of enhancing nanoparticle dispersion from injection sites using deliberate thermal damage.
机译:利用模拟精确地设计磁性纳米粒子热疗的加热方案不仅依赖于初始纳米颗粒分布,还依赖于加热过程中的动态颗粒迁移。开发了一种由纳米颗粒迁移组成的耦合理论框架,在多孔介质模型中,在传热模型中进行温度升高,以评估局部加热期间可能的纳米颗粒再分配。使用纳米粒子沉积的微型仿层析术(MicroCT)的五种产生的肿瘤模型用于预测温度升高,并在每个肿瘤受到交替磁场时评估局部热损伤。局部热损伤进一步改变了肿瘤中的间质结构,导致孔隙率和扩散系数的增强,以促进纳米粒子扩散到低浓度区域。加热后,最高浓度范围内的纳米颗粒的分布体积减少,而较低浓度范围的纳米颗粒增加。加热后,定义为纳米颗粒占据的肿瘤体积的总纳米颗粒分布体积比加热前的肿瘤体积大于21%。纳米粒子迁移趋势的理论预测与MicroCT扫描分析的实验结果吻合良好。结论是,纳米颗粒扩散中的热损伤诱导增强可以是解释磁性纳米颗粒热疗期间纳米粒子迁移的机制之一。本研究的结果可能表明使用刻意的热损坏从注射部位增强纳米粒子分散的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号