...
首页> 外文期刊>International Communications in Heat and Mass Transfer >Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM)
【24h】

Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM)

机译:褐色运动用格子玻璃法(LBM)在褐色运动效应下纳米流体内纳米流体内部混合对流的数值研究(LATTICE)(LBM)

获取原文
获取原文并翻译 | 示例
           

摘要

In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the cavity at the upper side of the left wall and, after being heated by the hot obstacle, exits from the lowest right side of the cavity The effective thermal conductivity and viscosity of nanofluids are computed by the KKL (Koo-Kleinstreuer-Li) equation. The results are presented in the constant Rayleigh number of 104 and the Richardson numbers of 0.1,1 and 10. Obtained results reveal that by incrementing Ri because of the augmentation of inlet fluid velocity from the left side, the gradient of isothermal lines decreases, and temperature distribution becomes more uniform, leading to Nusselt number reduction on hot wall. Although the Nu_(avg) enhances considerably in Ri of 0.1, in Ri = 1 and 10, there is no sensible change. In the angle of 0o, by augmenting Ri, Nu_(avg) decreases, but in the angle of 60o, by increasing Ri from 0.1 to 1, Nu_(avg) increments up to 22%. This augmentation is due to the change of angle of the collision of flow with the hot obstacle. Furthermore, when the hot obstacle is located in the flow path, heat transfer improves. Application of such studies shows its importance in the design of electronic components cooling systems, solar energy storage, heat exchangers, and lubrication systems.
机译:在本数值研究中,通过利用晶格Boltzmann方法(LBM)的热模型,Cu水和Cuo水纳米流体的混合对流在倾斜的方形腔内进行建模。冷流体流进入左壁上侧的腔中,并且在被热障碍物加热之后,从腔的最低右侧排出,纳米流体的有效导热率和粘度由KL(Koo -kleinstreuer-li)方程式。结果呈现在104的恒定瑞利数量和0.1,1和10的Richardson数量中。获得的结果表明,由于从左侧增加入口流体速度,通过递增RI,等温线的梯度降低,并且温度分布变得更加均匀,导致热墙上的营养数减少。虽然NU_(AVG)在0.1的RI中增强,但在RI = 1和10中,没有明智的变化。在0O的角度下,通过增强RI,NU_(AVG)降低,但是在60O的角度下,通过从0.1到1,NU_(AVG)增量增加到22%的RI。这种增强是由于流动碰撞与热障碍的角度的变化。此外,当热障碍物位于流动路径中时,热转印改善。这些研究的应用在电子元件冷却系统,太阳能储存,热交换器和润滑系统的设计中表明其重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号