...
首页> 外文期刊>International Communications in Heat and Mass Transfer >Molecular dynamics simulation of argon flow in large scale within different microchannels under phase change condition
【24h】

Molecular dynamics simulation of argon flow in large scale within different microchannels under phase change condition

机译:在相变条件下不同微通道内大规模氩流量的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, the molecular dynamics simulation method is employed to simulate the boiling flow of argon flow inside the microchannels with different surfaces of ideal and roughened with cone barriers, cubic barriers, and spherical barriers respectively. For all simulations, boundary walls of all microchannels are set at a temperature of 98 K to prepare the required thermal energy for boiling argon fluid flow within channels. Also, to enforce argon fluid to flow along the mentioned microchannels, a unique external driving force is prepared at the entry region of all microchannels. Afterward, the evolution of boiling flow is reported in four-time steps of 250,000, 500,000, 750,000, and 1,000,000, respectively. Then, velocity and temperature profiles of argon flow are reported after completion of the boiling process at 1000000-time steps. Investigations in the progress of boiling flow until 7,500,000-time steps show different behavior between rough microchannel with cubic barriers and behaviors of fluid flow within other channels in the distribution of argon particles in middle regions of channels. But, it is reported that with completion of the boiling process at 1000000-time steps, consequences of cubic geometry of barriers on the normal distribution of fluid atoms in a different region of the microchannel are removed. Also, it is reported that differences between maximums and minimums of flow temperatures are around 150 K for ideal channel and rough channels with cone and spherical barriers, while it is about 300 K for the rough channel with cubic barriers. Moreover, the temperature of argon flow in the center of the channel with cubic barriers can be reached even to 410 K which needs to be controlled by polishing the internal surfaces in some of the practical applications such as microprobes in medical cryosurgeries.
机译:在该研究中,采用分子动力学模拟方法来模拟微通道内的氩气流的沸腾流,其具有不同表面的理想和粗糙的屏障,立方体屏障和球形屏障。对于所有模拟,所有微通道的边界壁都设置在98k的温度下,以制备所需的热能,以便在通道内沸腾氩气流。而且,为了强制实施氩气沿着所提到的微通道流动,在所有微通道的入口区域中准备独特的外部驱动力。之后,分别以250,000,500,000,750,000和1,000,000分的四次步长报告沸腾流程的演变。然后,在1000000级步骤完成沸腾过程之后报告氩流的速度和温度谱。沸腾流程进展的调查,直到7,500,000阶段显示粗糙的微通道与立方体屏障和其他通道中的流体流动的行为之间的不同行为在通道中的中间区域分布中的氩颗粒的分布。但是,据报道,在1000000 - 时间步骤下完成沸腾过程,除去微通道在微通道的不同区域中的流体原子正常分布对障碍物的后果。此外,据报道,对于具有锥形和球形屏障的理想通道和粗糙通道,最大和最小的流动温度和最小值之间的差异为约150 k,而具有立方体屏障的粗糙通道约为300k。此外,甚至可以通过抛光医疗冷冻饲养员如微生物训练中的一些实际应用中的内表面来达到具有立方屏障的沟道中心的氩气中的氩气流的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号