首页> 外文期刊>Insight >Vibration response characterisation and fault-size estimation of spalled ball bearings
【24h】

Vibration response characterisation and fault-size estimation of spalled ball bearings

机译:散裂球轴承的振动响应表征和故障尺寸估计

获取原文
获取原文并翻译 | 示例
       

摘要

Research efforts have increased to investigate the ability to quantify localised bearing faults, ie spalls. These efforts revolve around extending the useful service life of the bearing after the detection of spalls. A number of studies have investigated a linear correlation between the size of spalls and three geometric points that may be recognised in the vibration response: the entry into the spall; the exit from the spall; and a third impact point between the first two. The time difference between these points, calculated using different signal processing techniques, has been widely exploited for quantifying spall size. Currently, there are two main challenges: the first is to enhance the entry point, which typically has weak excitation; the second is to distinguish the impact and the exit points investigated in the literature based on the spall size. However, for practical applications, there is no prior rough estimation of the fault size (ie small or large) and a method is needed for the interpretation of responses. This paper provides insights into the movement of the rolling element within the spall region and shows that the rolling element strongly strikes the bearing races at a minimum of two points. A new technique is then presented to quantify the spall and determine the inherent scaling factor without comparison to any reference data. The technique is based on evaluating two root-mean-square (RMS) energy envelopes, one for the vibration signal and one for a numerical differentiation of this signal. A geometric scaling factor is then used to give a generalised quantification for the small and large spalls. Serviceable estimations of spall size have been achieved for several seeded faults measured on two dissimilar test-rigs provided by the German Aerospace Centre (DLR) and the University of New South Wales (UNSW).
机译:为了研究量化局部轴承故障(例如剥落)的能力,已经进行了更多的研究工作。这些努力围绕着在发现剥落之后延长轴承的使用寿命。许多研究已经研究了剥落的大小与振动响应中可以识别的三个几何点之间的线性相关性:剥落的出口;第三个影响点位于前两个之间。使用不同的信号处理技术计算出的这些点之间的时间差已被广泛用于量化剥落大小。当前,存在两个主要挑战:首先是增强通常具有弱激励的入口点;第二个是根据剥落大小来区分文献中研究的影响点和出口点。然而,对于实际应用,没有对故障大小(即小或大)的事先粗略估计,并且需要一种用于解释响应的方法。本文提供了对滚动元件在剥落区域内运动的见解,并表明滚动元件在至少两个点上强烈撞击轴承座圈。然后提出一种新技术来量化剥落并确定固有比例因子,而无需与任何参考数据进行比较。该技术基于评估两个均方根(RMS)能量包络,一个用于振动信号,一个用于对该信号进行数值微分。然后使用几何比例因子对小和大剥落进行广义量化。在由德国航空航天中心(DLR)和新南威尔士大学(UNSW)提供的两个不同的试验台上测量的几种种子断层,已经获得了可行的剥落大小估计。

著录项

  • 来源
    《Insight》 |2017年第3期|149-154|共6页
  • 作者

    M A A Ismail; N Sawalhi;

  • 作者单位

    German Aerospace Centre (DLR), Institute of Flight Systems, 38108 Braunschweig, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号