...
首页> 外文期刊>Industrial Lubrication and Tribology >Inverse approach for the pressure, temperature, and pressure-viscosity index determination in TEHL of line contacts
【24h】

Inverse approach for the pressure, temperature, and pressure-viscosity index determination in TEHL of line contacts

机译:在线接触的TEHL中确定压力,温度和压力-粘度指数的逆方法

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose – The purpose of this paper is to describe an inverse approach to estimate the pressure distribution, temperature distribution, and pressure-viscosity index (z) in a thermal elastohydrodynamic lubrication (TEHL) line contact. nnDesign/methodology/approach – Once the film thickness is given, the pressure distribution can be calculated using the inverse approach. Subsequently, thermal expansivity and temperature-viscosity coefficient of lubricant are given, and then the z is guessed initially. The Gauss-Seidel iteration is employed to calculate the temperature distribution from the rheology, energy, and surface temperature equations. In order to increase the algorithm stability, the least-squares method must be employed to calculate the optimum value of the z in the computational domain. Furthermore, the pressure-viscosity index must be updated by the iteration method to calculate accurate temperature distribution and apparent viscosity until convergence. nnFindings – This approach presents a smooth curve of the pressure and temperature distributions with the measurement error from the resolution in the film thickness measurement and z value. Furthermore, this approach still provides a superior solution in apparent viscosity, whereas the direct method provides a much larger error in apparent viscosity. nnOriginality/value – The paper describes an inverse approach to estimate the pressure distribution, temperature distribution, and pressure-viscosity index in a TEHL line contact. This approach overcomes the problems of pressure and temperature rise fluctuations and generates accurate results of pressure and temperature distribution from a small number of measured points of film thickness, which also saves computing time. Furthermore, this approach still provides a superior solution in apparent viscosity.
机译:目的–本文的目的是描述一种估计热弹性流体动力润滑(TEHL)线接触中的压力分布,温度分布和压力-粘度指数(z)的逆方法。 nn设计/方法/方法–给出膜厚度后,可使用逆方法计算压力分布。随后,给出润滑剂的热膨胀系数和温度-粘度系数,然后首先猜测z。使用高斯-赛德尔迭代法从流变,能量和表面温度方程式计算温度分布。为了提高算法的稳定性,必须采用最小二乘法在计算域中计算z的最佳值。此外,必须通过迭代方法更新压力-粘度指数,以计算准确的温度分布和表观粘度,直到收敛为止。 nnFindings –这种方法根据膜厚测量的分辨率和z值显示压力和温度分布的平滑曲线以及测量误差。此外,该方法仍提供表观粘度的优异解决方案,而直接方法提供的表观粘度误差更大。 nnOriginality / value(原始值/数值)–本文介绍了一种反向方法来估计TEHL线接触中的压力分布,温度分布和压力-粘度指数。这种方法克服了压力和温度上升波动的问题,并从少量的膜厚测量点生成压力和温度分布的准确结果,这也节省了计算时间。此外,该方法仍提供表观粘度的优异解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号