...
首页> 外文期刊>IEEE Transactions on Industrial Electronics >An Edge Computing Framework for Powertrain Control System Optimization of Intelligent and Connected Vehicles Based on Curiosity-Driven Deep Reinforcement Learning
【24h】

An Edge Computing Framework for Powertrain Control System Optimization of Intelligent and Connected Vehicles Based on Curiosity-Driven Deep Reinforcement Learning

机译:基于好奇心驱动的深层加固学习的智能和连通车辆动力传动控制系统优化的优势计算框架

获取原文
获取原文并翻译 | 示例
           

摘要

For the ongoing revolution in developing intelligent and connected vehicles (ICVs), there is a lack of research for powertrain control systems using the latest artificial intelligence and vehicle-to-everything technology that have already been widely adopted in the autonomous driving systems. In this context, recent development of deep reinforcement learning (DRL) and one of the latest computing frameworks are coupled to facilitate an onboard-based intelligent powertrain control. Taking the boost control of a diesel engine equipped with variable geometry turbocharger as an example, the results show that the final control behavior indicated by the cumulated rewards is improved by 50.43% and the learning efficiency is improved by 74.29% for the proposed curiosity-driven DRL algorithm, compared with the same structure DRL algorithm with classic random exploration policy. In addition, unlike most of the DRL-based powertrain optimization algorithms, which have only been applied to single-machine architecture, this work manages the proposed DRL algorithm in parallel and, more importantly, from an edge computing perspective. This, in addition to greatly speeding up the algorithm training, can also realize a good balance of control accuracy and generality depending upon the selected training scenario. Moreover, unlike most of the cloud computing frameworks, which require low network latency, the proposed architecture can achieve a similar final control performance even if good network communication is not allowed. Compared with other existing powertrain control methods, the proposed algorithm is able to approximate a global powertrain control optimization autonomously in a connected manner, making it attractive to current ICVs with advanced automated driving and traditional powertrain control.
机译:对于开发智能和连通车辆(ICVS)的持续革命,使用最新的人工智能和车辆到所有技术缺乏对动力总成控制系统的研究,这些技术已经在自主驾驶系统中被广泛采用。在这种情况下,最近的深度增强学习(DRL)和最新的计算框架之一耦合以便于基于板载的智能动力系控制。以配备可变几何涡轮增压器的柴油发动机为例,结果表明,累积奖励指示的最终控制行为提高了50.43%,提高了提出的好奇心驱动的学习效率提高了74.29% DRL算法与具有经典随机探索政策的相同结构DRL算法相比。此外,与大多数基于DRL的动力总成优化算法不同,该算法仅应用于单机架构,这项工作并行管理所提出的DRL算法,更重要的是,从边缘计算透视图管理。这是大大加速算法培训外,还可以根据所选择的训练场景来实现控制精度和普遍性的良好平衡。此外,与需要低网络延迟的大多数云计算框架不同,即使不允许良好的网络通信,所提出的架构也可以实现类似的最终控制性能。与其他现有的动力总成控制方法相比,所提出的算法能够以连接的方式自动地近似全球动力总成控制优化,使其对当前具有先进自动化驾驶和传统动机控制的ICV具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号