...
首页> 外文期刊>Signal Processing, IEEE Transactions on >Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal Recovery
【24h】

Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal Recovery

机译:稀疏信号恢复的投影Nesterov近邻梯度算法

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a projected Nesterov's proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov's momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signal belongs to a closed convex set within the closure of the domain of the NLL; the convex-set constraint facilitates flexible NLL domains and accurate signal recovery. Signal sparsity is imposed using the $boldsymbol{ell }_1$ -norm penalty on the signal's linear transform coefficients. The PNPG approach employs a projected Nesterov's acceleration step with restart and a duality-based inner iteration to compute the proximal mapping. We propose an adaptive step-size selection scheme to obtain a good local majorizing function of the NLL and reduce the time spent backtracking. Thanks to step-size adaptation, PNPG converges faster than the methods that do not adjust to the local curvature of the NLL. We present an integrated derivation of the momentum acceleration and proofs of $boldsymbol{mathcal {O}(k^{-2})}$ objective function convergence rate and convergence of the iterates, which account for adaptive step size, inexactness of the iterative proximal mapping, and the convex-set constraint. The tuning of PNPG is largely application independent. Tomographic and compressed-sensing reconstruction experiments with Poisson generalized linear and Gaussian linear measurement models demonstrate the performance of the proposed approach.
机译:我们开发了一种预测的Nesterov的近端梯度(PNPG)方法,用于稀疏信号重建,该方法将自适应步长与Nesterov的动量加速度相结合。我们希望最小化的目标函数是凸可微数据保真度(负对数似然(NLL))项和凸正则化项的总和。我们应用稀疏信号正则化,其中信号属于NLL域的闭合范围内的闭合凸集;凸集约束有利于灵活的NLL域和准确的信号恢复。使用$ boldsymbol {ell} _1 $ -norm惩罚对信号的线性变换系数施加信号稀疏性。 PNPG方法采用计划的Nesterov的加速步长并重新启动和基于对偶的内部迭代来计算近端贴图。我们提出了一种自适应的步长选择方案,以获得NLL的良好局部主化功能并减少回溯所花费的时间。得益于步长自适应,PNPG的收敛速度比不适应NLL局部曲率的方法快。我们提供动量加速度的综合推导和$ boldsymbol {mathcal {O}(k ^ {-2})} $目标函数的收敛速度和迭代次数的证明,这说明了自适应步长,迭代次数的不精确性近端贴图和凸集约束。 PNPG的调整在很大程度上与应用程序无关。用泊松广义线性和高斯线性测量模型进行的层析成像和压缩传感重建实验证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号