...
首页> 外文期刊>Nuclear Science, IEEE Transactions on >A Real-Time Architecture for the Identification of Faulty Magnetic Sensors in the JET Tokamak
【24h】

A Real-Time Architecture for the Identification of Faulty Magnetic Sensors in the JET Tokamak

机译:用于识别JET Tokamak中故障磁传感器的实时架构

获取原文
获取原文并翻译 | 示例
           

摘要

In a tokamak, the accurate estimation of the plasma boundary is essential to maximise the fusion performance and is also the first line of defence for the physical integrity of the device. In particular, the first wall components might get severely damaged if over-exposed to a high plasma thermal load. The most common approach to calculate the plasma geometry and related parameters is based in a large set of different types of magnetic sensors. Using this information, real-time plasma equilibrium codes infer a flux map and calculate the shape and geometry of the plasma boundary and its distance to a known reference (e.g. first wall). These are inputs to one or more controllers capable of acting on the shape and trajectory based in pre-defined requests. Depending on the device, the error of the estimated boundary distance must usually be less than 1 centimetre, which translates into very small errors on the magnetic measurement itself. Moreover, asymmetries in the plasma generated and surrounding magnetic fields can produce local shape deformations potentially leading to an unstable control of the plasma geometry. The JET tokamak was recently upgraded to a new and less thermally robust all-metal wall, also known as the ITER-like wall. Currently the shape controller system uses the output of a single reconstruction algorithm to drive the plasma geometry and the protection systems have no input from the plasma boundary reconstruction. These choices are historical and were due to architectural, hardware and processing power limitations. Taking advantage of new multi-core systems and of the already proved robustness of the JET real-time network, this paper proposes a distributed architecture for the real-time identification of faults in the magnetic measurements of the JET tokamak. Besides detecting simple faults, such as short-circuits and open-loops, the system compares the expected measurement at the coil location and the real measurement, producing a confidence valu- . Several magnetic reconstructions, using sensors from multiple toroidally distributed locations, can run in parallel, allowing for a voting or averaging scheme selection. Finally, any fault warnings can be directly fed to the real-time protection sequencer system, whose main function is to coordinate the protection of the JET’s first wall.
机译:在托卡马克中,对等离子体边界的准确估计对于最大化融合性能至关重要,同时也是设备物理完整性的第一道防线。特别是,如果过度暴露于高等离子热负荷下,第一壁组件可能会受到严重损坏。计算等离子体几何形状和相关参数的最常见方法是基于大量不同类型的磁传感器。利用该信息,实时等离子体平衡代码推断出通量图,并计算等离子体边界的形状和几何形状以及其与已知参考(例如第一壁)的距离。这些是一个或多个控制器的输入,这些控制器能够根据预定义的请求对形状和轨迹进行操作。根据设备的不同,估计边界距离的误差通常必须小于1厘米,这会转化为磁测量本身的很小误差。而且,在等离子体产生的和周围磁场中的不对称会产生局部形状变形,从而潜在地导致对等离子体几何形状的不稳定控制。 JET托卡马克最近已升级为新型且热稳定性较差的全金属墙,也称为ITER型墙。当前,形状控制器系统使用单个重构算法的输出来驱动等离子体几何形状,并且保护系统没有来自等离子体边界重构的输入。这些选择是历史性的,是由于体系结构,硬件和处理能力的限制。利用新的多核系统和JET实时网络已被证明的鲁棒性,本文提出了一种分布式架构,用于实时识别JET托卡马克磁测量中的故障。除了检测诸如短路和开环之类的简单故障外,该系统还将线圈位置的预期测量值与实际测量值进行比较,从而产生置信度值。使用来自多个环形分布位置的传感器进行的几个磁重构可以并行运行,从而可以选择投票或平均方案。最后,任何故障警告都可以直接馈入实时保护定序器系统,该系统的主要功能是协调对JET第一堵墙的保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号