首页> 外文期刊>IEEE Transactions on Magnetics >Neural Computing With Magnetoelectric Domain-Wall-Based Neurosynaptic Devices
【24h】

Neural Computing With Magnetoelectric Domain-Wall-Based Neurosynaptic Devices

机译:基于磁电域 - 壁的神经突触装置的神经计算

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional von-Neumann computing models have achieved remarkable feats for the past few decades. However, they fail to deliver the required efficiency for certain basic tasks like image and speech recognitions when compared with the biological systems. As such, taking cues from the biological systems, novel computing paradigms are being explored for the efficient hardware implementations of the recognition/classification tasks. The basic building blocks of such neuromorphic systems are neurons and synapses . Toward that end, we propose a leaky-integrate-fire (LIF) neuron and a programmable non-volatile synapse using the domain-wall (DW) motion induced by the magnetoelectric effect. Due to the strong elastic pinning between the ferromagnetic DW (FM-DW) and the underlying ferroelectric DW (FE-DW), the FM-DW is dragged by the FE-DW on the application of a voltage pulse. The fact that FE materials are insulators allows for pure voltage-driven FM-DW motion, which in turn can be used to mimic the behavior of the biological spiking neurons and synapses. The voltage-driven nature of the proposed devices allows the energy-efficient operation. A detailed device to the system-level simulation framework based on the micromagnetic simulations has been developed to analyze the feasibility of the proposed neurosynaptic devices for implementing the neuromorphic systems. A key highlight of the presented work as opposed to the prior works on the DW neurons and synapses is that the proposed device can seamlessly incorporate the “controlled leaky” behavior both in neurons and synapses, leading to the improved bioplausible behavior.
机译:传统的von-neumann计算模型在过去的几十年里取得了卓越的壮举。但是,与生物系统相比,它们未能为某些基本任务提供所需的效率,如图像和语音识别。因此,从生物系统中接受提示,正在探索新的计算范例,用于识别/分类任务的有效硬件实现。这种<斜体XMLNS的基本构建块:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>神经形式系统是<斜体xmln:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>神经元和<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>突触< /斜体>。朝向这一点,我们提出了一种使用磁电效应引起的域壁(DW)运动的漏液 - 整合 - 火(LIF)神经元和可编程非易失性突触。由于铁磁DW(FM-DW)和底层铁电DW(FE-DW)之间的强弹性钉扎,FM-DW被FE-DW拖动到电压脉冲的应用。 Fe材料是绝缘体的事实允许纯电压驱动的FM-DW运动,这又可以用于模拟生物尖峰神经元和突触的行为。所提出的装置的电压驱动性质允许节能操作。已经开发了一种基于微磁性模拟的系统级仿真框架的详细装置,以分析所提出的神经突触装置来实现神经族系统的可行性。当前工作的一个关键亮点而不是在DW神经元和突触上的先前作品是,所提出的设备可以无缝地合并<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml “xmlns:xlink =”http://www.w3.org/1999/xlink“>”受控泄漏“行为都在神经元和突触中,导致改进的生物效力行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号